Выбрать главу

Ток в цепи, содержащей индуктивность, отстает от напряжения на 90° (для конденсатора ток, наоборот, опережает напряжение), но результат оказывается аналогичным — чистая индуктивность, включенная последовательно с нагрузкой, не потребляет энергии в цепи переменного тока, хотя ток в цепи будет зависеть от величины индуктивности. Только эффект этот проявляется обратно случаю с конденсатором — ток в цепи с индуктивностью падает с увеличением частоты (у конденсатора, как мы видели, он увеличивается), а для постоянного тока индуктивность представляет собой нулевое сопротивление. Для того чтобы получить эффект, близкий к расчетному, активное сопротивление индуктивности (т. е. ее сопротивление постоянному току) должно быть как можно ближе к нулю, что на практике достичь довольно сложно.

Это другая причина того, что индуктивности очень не любят схемотехники, — их характеристики гораздо дальше от идеала, чем у резисторов и конденсаторов. Но надо помнить, что любой проводник всегда наделен этими тремя свойствами: т. е. в небольшой степени является и резистором, и конденсатором, и индуктивностью. Эти мелочи могут иногда сыграть довольно неожиданную роль в разных схемах.

* * *

Подробности

В силу указанных причин при наличии реактивной нагрузки в цепи переменного тока полезная мощность (в нагрузке) может отличаться от величины произведения потребляемого тока на напряжение — она всегда меньше. Поэтому в электротехнике различают реактивную мощность, выраженную в вольт-амперах, и активную мощность в ваттах, а отношение их называют коэффициентом мощности. Другое его общепринятое название — «косинус фи», потому что коэффициент мощности есть не что иное, как cos(φ), где φ — угол фазового сдвига тока относительно напряжения. При постоянном токе, а также в случае чисто активной нагрузки, этот угол равен нулю, потому коэффициент мощности равен 1. В другом предельном случае — когда нагрузка чисто реактивная — коэффициент мощности равен 0. В реальных цепях с электродвигателями или, скажем, с мощными вторичными импульсными источниками питания в качестве потребителей (офис с большим количеством компьютеров), коэффициент мощности может лежать в пределах 0,6–0,95. Следует подчеркнуть, что коэффициент мощности — это не КПД, как можно себе вообразить. Разница между вольт-амперами и ваттами никуда не теряется в физическом смысле, она всего лишь приводит к таким неприятным последствиям, как увеличение потерь в проводах, о котором мы упоминали (потери пропорциональны именно вольт-амперам), а также к возникновению разбаланса между фазами трехфазной промышленной сети, в результате чего через нулевой, обычно более тонкий, чем все остальные, провод начинают протекать значительные токи.

ГЛАВА 6

Изобретение, которое потрясло мир

Диоды, транзисторы и простейшие схемы на их основе

Не имея намерения подробно описывать осаду и приводя лишь те события, которые имеют непосредственную связь с рассказываемой нами историей, скажем вкратце, что предприятие удалось

А. Дюма. Три мушкетера

Казалось бы, все так просто: есть очень хорошие проводники (металлы), есть очень плохие — изоляторы (фарфор или пластмасса), а есть — полупроводники. Подумаешь! Причем полупроводников на свете гораздо больше, чем проводников и изоляторов, что, если подумать, представляется естественным. Однако когда научились получать очень чистые полупроводники со строго дозированными определенными примесями, то оказалось, что это — революция, потому что такие материалы обладают совершенно необыкновенными электрическими характеристиками.

Электроника на основе полупроводников носит также название твердотельной. Полупроводниковые приборы делают на основе разных материалов — в основном, кремния. Первым промышленным полупроводником стал германий (а до него еще существовали купроксные и селеновые диоды), но сейчас он практически не употребляется, и только небольшая часть полупроводниковых компонентов — например, светодиоды — делается из материалов, отличных от кремния.

Из всех полупроводниковых устройств исторически первыми были диоды.

Диоды

Вообще-то диод — устройство вовсе не обязательно полупроводниковое. Были и ламповые диоды (кенотроны), но они давно вымерли, потому мы будем рассматривать только твердотельные.

Диод — простейший активный электронный прибор, проще не бывает. В одну сторону диод проводит ток (т. е. представляет собой в идеале проводник с малым сопротивлением), в другую — нет (т. е. превращается в очень большое сопротивление) — одним словом, обладает односторонней проводимостью. Соответственно, выводов у него всего два: они, как повелось еще со времен ламповой техники, называются анодом (положительным выводом) и катодом (отрицательным). Если подключить диод к регулируемому источнику напряжения, то он будет вести себя, как показано на рис. 6.1, где представлена так называемая вольт-амперная характеристика диода. Из нее, в частности, следует, что в прямом включении (т. е. анодом к плюсу источника) после превышения некоторого порогового напряжения (Uпр) прямой ток через диод (Iпр) растет неограниченно и будет лимитироваться только мощностью источника (скорее всего, диод сгорит раньше, чем эта мощность будет достигнута).

Рис. 6.1. Вольт-амперная характеристика диода

В обратном же включении (катодом к плюсу) ток через диод (Iобр) пренебрежимо мал и составляет несколько микро- или даже наноампер для обычных маломощных кремниевых диодов или до единиц миллиампер для мощных выпрямительных. Причем для германиевых диодов обратный ток намного выше, чем для кремниевых, отчего их сейчас практически и не употребляют. Этот ток сильно зависит от температуры и может возрасти на несколько порядков (от нано- до микроампер) при повышении температуры от -50 °C до +50 °C, поэтому на графике его величина показана очень приблизительно (обратите внимание, что для наглядности верхняя и нижняя половины графика по оси токов построены в разных масштабах).

В отличие от обратного тока, прямое падение напряжения Uпp гораздо меньше зависит как от типа и конструкции, так и от температуры. Для кремниевых диодов прямое падение напряжения Uд всегда можно считать равным примерно 0,6–0,7 В, для германиевых и так называемых диодов Шоттки (маломощных диодов с переходом металл-полупроводник) — порядка 0,2–0,4 В. Для кремниевых диодов при увеличении температуры Uпр падает примерно на 2,3 мВ на один градус, и этот эффект нередко используют для измерения температуры. В германиевых диодах, кстати, этот эффект в разы больше (порядка 10 мВ на градус).

Если умножить указанное прямое падение напряжения на проходящий через диод в прямом включении ток, то мы получим тепловую мощность, которая выделяется на диоде. Именно она приводит диоды к выходу из строя — при превышении допустимого тока они просто сгорают. Обычное предельно допустимое среднее значение тока через маломощные диоды — десятки и сотни миллиампер. Впрочем, тепловые процессы инерционны, и мгновенное значение тока, в зависимости от длительности импульса, может превышать предельно допустимое среднее значение в сотни раз! Мощные диоды (рассчитанные на токи 3–5 А и выше) часто приходится устанавливать на радиаторы.