Выбрать главу

Ряд элементов, получающихся в результате распада радиоактивных элементов, носит название радиоактивного ряда.

Все ядра каждого радиоактивного элемента являются неустойчивыми и вероятность того, что они распадутся в заданный промежуток времени, одинакова. Таким образом, достаточно большой образец радиоактивного вещества, содержащий многие миллионы атомов, всегда распадается с одной и той же постоянной скоростью, независимо от каких бы то ни было химических и физических воздействий.

Было доказано, что различные внешние физические воздействия на радиоактивное вещество, начиная от температуры жидкого гелия, близкой к абсолютному нулю, до температур в несколько тысяч градусов, давления в несколько тысяч атмосфер и электрические разряды высокого напряжения, никакого влияния на распад его не оказывают.

Скорость, с какой радиоактивное вещество распадается или превращается, обыкновенно выражается через период полураспада Т, или время, необходимое для того, чтобы половина всех первоначально присутствующих атомов вещества успела распасться. Эта величина, очевидно, характерна и постоянна для каждой разновидности неустойчивых атомов, то есть для каждого данного радиоактивного элемента.

Периоды полураспада радиоактивных элементов лежат в очень широком интервале — от долей секунды для наиболее неустойчивых атомных ядер до миллиардов лет для слегка неустойчивых, к которым относятся, например, уран и торий. Часто дочернее ядро, подобно своему радиоактивному «родителю», само является неустойчивым радиоактивным и распадается, пока, наконец, через несколько последовательных поколений ядер не образуется устойчивое ядро.

В настоящее время известны три таких естественных радиоактивных ряда, или семейства: ряд урана-радия, начинающийся с изотопа урана с массой атома 238, ряд урана-актиния, начинающийся с другого изотопа урана с массой 235, и ряд тория. Конечными устойчивыми и далее не разрушающимися продуктами каждого из этих рядов, образующимися после десяти-двенадцати последовательных превращений, являются ядра атомов изотопов свинца, соответственно с массами 206, 207, 208. Кроме свинца, устойчивыми продуктами превращений в каждом из указанных выше радиоактивных рядов являются лишившиеся своей кинетической энергии и заряда альфа-частицы, ставшие атомами гелия.

Схема саморазвивающейся цепной реакции в ядрах атома урана-235

При непрерывно протекающем на земле радиоактивном распаде атомов урана, тория и радия происходит постоянное выделение тепла.

Если подсчитать количество тепла всех указанных элементов, выделяемое при распаде, то окажется, что, сами того не подозревая, мы давно уже пользуемся этим теплом, так как за его счет наш земной шар заметно подогревается.

Точно так же оказывается, что добываемый для наполнения дирижаблей и аэростатов заграждения газ гелий образуется за счет радиоактивного распада содержащихся в земле атомов урана, тория и радия. Подсчитано, что таким путем в земле за время ее существования образовались огромные количества газа гелия, исчисляемые многими сотнями миллионов кубических метров.

Непрерывно протекающий распад содержащихся в земле атомов урана, тория и радия интересен для нас не только как источник постоянного тепла и как источник образования промышленных запасов химических элементов, но и как естественный часовой механизм, хронометр, по которому мы можем отсчитывать время, протекшее с момента образования на Земле тех или других горных пород и, наконец, самой Земли как твердого тела.

Каким же образом атомы урана, тория и радия и их распад могут быть использованы как часы для определения геологического времени? А вот каким. Мы с вами видим, что скорость, с какой происходит распад радиоактивных атомов, не зависит от химических и физических воздействий и остается все время строго постоянной. С другой стороны, при радиоактивном распаде образуются устойчивые и далее не изменяющиеся атомы элементов гелия и свинца, количество которых с течением времени будет все более и более накапливаться.

Зная, какое количество гелия и свинца образуется за счет радиоактивного распада атомов из одного грамма урана или тория в течение одного года, и определив, сколько урана и тория содержится в каком-нибудь минерале и сколько в том же минерале содержится гелия и свинца, из отношения гелия к урану и торию, с одной стороны, и из отношения свинца к урану и торию — с другой, мы получим время в годах, которое прошло с момента образования этого минерала.