Как вы хорошо знаете из школьного курса физики, наиболее простым и наглядным примером переменной величины является величина, изменяющаяся во времени по синусоидальному закону. На рис. 2.2 приведен график подобной величины, построенный в условном масштабе. По оси ординат могут быть отложены как напряжение или ток, так и любой другой физический параметр. Отрезок времени Т есть период изменения, а величина А носит название амплитуды и представляет собой максимальное значение нашей переменной в одном периоде (отметим, что для синусоидального закона минимальное значение — в области ниже оси абсцисс — строго равно максимальному).
Рис. 2.2. График простого синусоидального колебания
Величина, обратная периоду, носит название частоты и обозначается буквой f (см. формулу на рис. 2.2 вверху). Для нее придумана специальная единица измерения— это хорошо всем знакомый герц (Гц), названный так в честь немецкого физика XIX века Генриха Герца, доказавшего существование радиоволн. Как следует из определения частоты, размерность герца есть единица, деленная на секунду: 1 Гц= 1/с, т. е. колебание с частотой 1 Гц имеет период повторения ровно 1 секунду. Соответственно, 1 кГц (килогерц) означает, что в одной секунде укладывается тысяча периодов, 1 МГц (мегагерц) — миллион периодов и т. п.
В дальнейшем под периодической величиной мы будем подразумевать напряжение (для тока все выглядит аналогично). Математический закон, описывающий поведение синусоидального напряжения (U) от времени (t), выглядит так:
U = A∙sin (2π∙f∙t). (2.1)
Здесь π есть хорошо нам знакомое иррациональное число «пи», т. е. отношение длины окружности к диаметру, равное 3,1415… Произведение 2πf носит специальное название «круговая частота» и обозначается буквой ω. Круговая частота — это величина угла (измеряемого в радианах), пробегаемого нашей синусоидальной функцией за секунду. Так как мы не будем заниматься радиочастотной техникой, то углубляться в дальнейшие абстракции вроде представления переменных колебаний через комплексные числа, где понятие круговой частоты является ключевым, не стоит, для практических нужд нам хватит приведенных наглядных определений обычной частоты.
А что будет, если график немного подвигать вдоль оси абсцисс? Как видно из рис. 2.3 (кривая 2), это равносильно признанию того факта, что в нулевой момент времени наше колебание не равно нулю.
Рис. 2.3. График синусоидальных колебаний, различающихся по фазе:
1 — исходное колебание; 2 — сдвинутое на четверть периода
На рис. 2.3 оно начинается с максимального значения амплитуды. При этом сдвигаются моменты времени, соответствующие целому и половине периода, а в уравнении появится еще одна величина, обозначаемая буквой φ и измеряемая в единицах угла — радианах:
U = A∙sin (2π∙f∙t + φ). (2.2)
Величина φ носит название фазы. Взятое для одного отдельного колебания, значение фазы не имеет особого смысла, т. к. мы всегда можем сместить точку начала отсчета времени так, чтобы привести уравнение к виду (2.1), а, соответственно, график — к виду рис. 2.2, и при этом ничего не изменится. Все будет иначе, если мы имеем два связанных между собой колебания, скажем, напряжения в разных точках одной схемы. В этом случае нам может быть важно, как соотносятся их величины в каждый момент времени, и тогда фаза одного переменного напряжения относительно другого (называемая в этом случае сдвигом или разностью фаз) и будет характеризовать такое соотношение. Для двух колебаний, представленных на рис. 2.3, сдвиг фаз равен 90° (π/2 радиан). Для наблюдения таких колебаний требуется многоканальный или многолучевой осциллограф — в обычном фаза колебания определяется только настройками синхронизации, и, рассматривая их по отдельности, разницы вы не увидите.