Так как через конденсатор постоянная составляющая напряжения не проходит, то полученные импульсы «привязаны» к выходному потенциалу схемы — в зависимости от того, куда подключен резистор. На графиках рис. 2.10 резистор подключен либо к «земле» (а), либо к источнику питания (б), потому и для выходного напряжения базовым будет либо нулевой потенциал, либо потенциал источника (при этом амплитуда импульсов будет такой, как у входного напряжения). Этим широко пользуются при необходимости умножения напряжения (обратите внимание, что на рис. 2.10, б амплитуда положительного выходного импульса в два раза выше напряжения питания), или для формирования двуполярного напряжения из имеющегося однополярного. Иногда этот эффект вреден: подачей отрицательного или превышающего потенциал источника питания напряжения можно вывести из строя компоненты схемы.
А интегрирующая цепочка (фильтр нижних частот, ФВЧ) получается из схем рис. 2.10, если в них R и С поменять местами. График выходного напряжения будет соответствовать показанному на рис. 2.11. Такие цепочки, наоборот, пропускают постоянную составляющую, в то время как высокие частоты будут отрезаться.
Рис. 2.11. Интегрирующая цепочка и график ее выходного напряжения, построенный в одном масштабе с входным
Если в такой цепочке увеличивать постоянную времени RС, то график будет становиться все более плоским — в пределе пройдет только постоянная составляющая (которая здесь равна среднему значению исходного напряжения, т. е. ровно половине его амплитуды). Этим широко пользуются при конструировании вторичных источников питания, в которых нужно отфильтровать переменную составляющую сетевого напряжения. Интегрирующими свойствами обладает также обычный кабель из пары проводов, о котором мы упоминали ранее, потому-то и теряются высокие частоты при прохождении сигнала через него.
Электрический сигнал, как следует из названия, — это какое-то состояние электрической цепи, которое несет информацию. Различают источники сигналов и их приемники. Так как минимальное количество информации (1 бит) подразумевает по крайней мере два различимых состояния (подробнее об этом будет идти речь в главе 7), то и сигнал должен иметь как минимум два состояния. Самый простой сигнал — наличие или отсутствие постоянного напряжения в цепи, именно такими сигналами обмениваются логические микросхемы. Однако на большое расстояние такой простейший сигнал не передашь, т. к. слишком сложно защититься от помех. Из-за них приемник легко может обнаружить наличие сигнала там, где на самом деле всего лишь помеха. Поэтому придумывают разные сложные методы, некоторые из них, например, предусматривают передачу переменного напряжения разной частоты или фазы (именно так устроены модемы).
Теория передачи сигналов тесно связана с теорией колебаний — одно только радио чего стоит! Подробнее о разных сигналах мы будем говорить в соответствующих главах, а сейчас нам важно только одно: когда мы говорим о сигналах, то подразумеваем, что соответствующее напряжение или ток не предназначено для совершения иной работы, кроме как заставить сработать приемник. Поэтому соответствующие передаваемые мощности здесь значительно меньше, чем при передаче электроэнергии для совершения полезной работы. Действительно, никто еще не придумал, как питать, скажем, спутники на орбите по радиолучу, а вот информацию передают вполне успешно даже за пределы Солнечной системы. В этом заключается основная разница между силовыми и сигнальными цепями. И понимание этого тонкого различия очень пригодится нам в дальнейшем.
Кстати, отдельный вопрос — а почему нам вообще надо возиться с переменным током, как основой электропитания? Сколько можно было бы сэкономить на трансформаторах и сглаживающих конденсаторах, которые зачастую составляют большую часть габаритов и стоимости схемы! Недаром схемотехники и дизайнеры в последнее время полюбили выносные блоки питания, встроенные в сетевую вилку— крайне некрасивое решение, которое просто переносит головную боль о габаритах с плеч разработчиков на плечи потребителей, зато позволяет не думать о выпрямителях, прочности изоляции, сертификатах электробезопасности и прочих трудностях преобразования силового переменного тока в постоянный.