Приведем еще одну полезную схему нестабилизированного источника, на этот раз двуполярного, т. е. выдающего два одинаковых напряжения относительно средней точки — «земли» (рис. 4.4).
Рис. 4.4. Нестабилизированный двуполярный источник питания
В принципе, она пояснений не требует, потому что очень похожа на однополярную, только возврат тока в обмотки от обеих нагрузок происходит непосредственно через общую «землю», минуя диодный мост. В качестве упражнения предлагаю вам самостоятельно разобраться, как работает эта схема. Вторичные обмотки (II и III) здесь, в сущности, представляют собой две одинаковые половины одной обмотки. Жирными точками около вторичных обмоток обозначены их начала, чтобы не перепутать порядок их соединения, если их наматывали раздельно.
Простейший стабилизатор — это стабилитрон, который мы упоминали в главе 3. Если параллельно ему подключить нагрузку (рис. 4.5, а), то напряжение на ней будет стабилизировано до тех пор, пока ток через нее не будет слишком велик. Рассчитать работу этой схемы можно так: в отсутствие стабилитрона напряжение в средней точке делителя из Rст (оно равно 200 Ом, как вы, наверное, догадались, т. к. при обозначении на схемах омы в большинстве случаев опускают, см. главу 5) и Rн должно превышать номинальное напряжение стабилизации стабилитрона Uст, иначе при его подключении ток через него не пойдет и стабилитрон не откроется. Так что максимальный ток, который мы можем получить в такой схеме, не превышает нескольких десятков миллиампер— в зависимости от мощности стабилитрона. Такой стабилизатор называют еще параметрическим.
Подробности
Вы зададите вопрос — а зачем здесь конденсатор? Ведь в нестабилизированном источнике, который мы рассмотрели ранее, и откуда поступает напряжение на этот стабилизатор, один фильтрующий конденсатор уже имеется, не так ли? Ответ простой: на выходе всех типов стабилизаторов всегда ставится конденсатор. Он позволяет сгладить наличие остаточных пульсаций, которые все равно просочатся на выход, т. к. стабилитрон имеет свое дифференциальное сопротивление, и при изменении входного напряжения или тока в нагрузке напряжение на нем также будет меняться, хоть и в значительно меньшей степени. Величина емкости здесь может быть значительно меньше, чем на выходе выпрямительного моста. Для интегральных стабилизаторов, которые мы будем рассматривать далее, установка конденсатора положена по рекомендациям производителя (и на входе, и на выходе) — иначе сложные внутренние схемы таких стабилизаторов с обратными связями могут «гудеть» — самовозбуждаться.
Значительно интересней схема на рис. 4.5, б. Здесь транзистор включен эмиттерным повторителем (см. главу 3), который, во-первых, имеет высокое входное сопротивление (поэтому ток через стабилитрон практически не зависит от изменений тока в нагрузке), во-вторых, служит усилителем тока, т. е. мощностные возможности здесь определяются только транзистором. Конденсаторов здесь целых два: первый помогает сглаживать пульсации на стабилитроне, второй — дополнительно оставшиеся пульсации на выходе транзистора.
Рис. 4.5. Два параметрических стабилизатора:
а — самый простой на стабилитроне; б — с эмиттерным повторителем
Подробности
Давайте попробуем рассчитать для простейшей параметрической схемы (рис. 4.5, а) т. н. коэффициент стабилизации: отношение изменения входного напряжения (в %) к изменению выходного (также в %). Для этого надо посмотреть в справочнике величину дифференциального сопротивления стабилитрона: для указанного КС156А — 46 Ом. Это означает, что при изменении тока через него на 1 мА изменение напряжения стабилизации составит 46 мВ. Теперь предположим, что входное напряжение изменяется на 1 В (8,3 %), тогда изменение тока будет равно 1 В/200 Ом = 5 мА, отсюда изменение выходного напряжения будет 46 — 5 = 230 мВ или 4,6 %. Коэффициент стабилизации тогда будет равен 8,3/4,3 ~= 2. Конечно, это очень маленькая величина, потому простейшие параметрические стабилизаторы ставят только в редких случаях, когда входное напряжение дополнительно стабилизировано заранее.