Выходное сопротивление простейшего стабилизатора очень велико, поэтому выходное напряжение будет «гулять» независимо от входного при изменении тока нагрузки, от которого напрямую зависит ток через стабилитрон. Другое дело — схема на рис. 4.5. б, в которой ток через стабилитрон изменяется на величину β транзистора меньшую, чем ток в нагрузке. Статический коэффициент передачи тока для транзистора КТ815А равен (по справочнику) 40, поэтому при изменении тока нагрузки на 1 мА, ток через стабилитрон изменится всего на 0,025 мА, а напряжение стабилизации, соответственно, всего на 1,15 мВ, а не на 46 мВ, как ранее. Теоретический коэффициент стабилизации этой схемы по входному напряжению равен приблизительно 70. На практике стабилизирующие свойства данной схемы оказываются несколько хуже, т. к. следует учитывать нестабильность падения напряжения «база-эмиттер» транзистора.
При этом надо учитывать ограничения, накладываемые минимальным током через стабилитрон (5 мА для КС156А) и его максимальной допустимой мощностью (300 мВт). При выходном токе 1 А базовый ток транзистора должен составить не менее 25 мА, поэтому общий ток через резистор Rст не может быть меньше 30 мА (что и дает значение 200 Ом при минимальной разности напряжений «вход-выход» ~6 В). Максимально возможный выходной ток в такой схеме ~2 А, потому что минимальное значение Rст = 100 Ом. При отсутствии нагрузки ток через стабилитрон составит тогда 60 мА, а выделяющаяся на нем мощность при напряжении стабилизации ~5 В как раз и составит 0,3 Вт.
Да, кстати, а какая мощность выделится на «проходном» транзисторе VT1? Не такая уж и маленькая: при выходном токе 1 А она составит (12 В — 5 В)∙1 А = целых 7 Вт! Значит, транзистор явно придется ставить на радиатор. Отсюда виден главный недостаток подобных аналоговых стабилизаторов — низкий КПД. В данном случае он всего около сорока процентов (проверьте!), остальное рассеивается в пространстве. Мы можем его несколько повысить, снижая входное напряжение, но только до определенного предела. Здесь этот предел равен примерно 8 В, иначе эта схема не справится. Помните, однако, что 8 В — это действительно нижний предел, а не среднее значение пульсирующего напряжения на выходе конденсатора фильтра, которое показывает вольтметр (если вы еще раз взглянете на рис. 4.3, то поймете о чем я). Иначе стабилизатор просто перестанет стабилизировать. Потому всегда следует иметь запас, и не маленький.
Заменой n-р-n-транзистора на р-n-р с соответствующей сменой всех полярностей (в том числе «переворотом» конденсаторов и стабилитрона) на обратные, мы получим стабилизатор отрицательного напряжения. На практике, однако, такие стабилизаторы давно уже не применяют. Гораздо более высокий коэффициент стабилизации, как по входному напряжению, так и по изменению тока нагрузки, дают интегральные стабилизаторы, которые к тому же гораздо проще в обращении.
Совершенно естественным ходом мысли разработчиков было бы упаковать типовой узел, состоящий из стабилитрона, транзистора и резистора в одну микросхему. Однако выдающийся схемотехник и разработчик аналоговых микроэлектронных устройств Р. Видлар, о котором мы еще вспомним в связи с изобретением интегрального операционного усилителя, рассудил иначе. Действительно, такая простейшая схема обладает целым рядом недостатков,
о которых мы говорили в предыдущем разделе. Для повышения коэффициента стабилизации наилучшим выходом было бы использовать принцип отрицательной обратной связи, с которым мы познакомимся в главе 6. Схему со стабилизирующей обратной связью не особенно трудно построить и на дискретных транзисторах, но с увеличением качества ее сложность и, соответственно, стоимость резко возрастают. А вот в производстве микросхем почти безразлично— пять транзисторов они содержат или тридцать пять. Кроме того, там все транзисторы находятся на одном кристалле, имеют одинаковую температуру и близкие характеристики, что недостижимо в дискретных схемах. Видлар этим воспользовался и сконструировал микросхему цА723, которая положила основу современным семействам интегральных стабилизаторов.