Самодельный импульсный преобразователь
Сейчас мы рассмотрим, как можно самостоятельно построить стабилизированный импульсный источник— преобразователь напряжения. Это может понадобиться на практике, если требуются нестандартные (например, повышенные) напряжения, кроме того, наш источник полностью разделяет (гальванически развязывает) входную и выходную цепи. Схема получится довольно громоздкая (хотя и не слишком большая по габаритам), и заниматься ее конструированием и отладкой стоит лишь в случае крайней необходимости. Однако характеристики такого преобразователя могут быть довольно высокими — по крайней мере, не хуже готовых изделий, и показанная схема хорошо иллюстрирует принципы работы такого рода устройств.
Принципиальная схема преобразователя приведена на рис. 4.7.
Рис. 4.7. Схема импульсного преобразователя с гальванической развязкой входа и выхода
Он преобразует входное напряжение +9 В в два высоких напряжения ±165 В. Я специально выбрал такой крайний случай, далее я покажу, как изменением всего нескольких параметров схемы получить на выходе практически любую пару симметричных напряжений. Общая максимальная мощность схемы приблизительно 4 Вт (при указанном выходном напряжении максимальный нагрузочный ток до 12 мА по каждому из выходов). Она может быть повышена, если малогабаритные MOSFET-транзисторы IRFD110 заменить на более Мощные (например, IRFZ44) и установить их на радиаторы. К сожалению, сильно снижать входное напряжение в данной схеме нельзя (не будут работать транзисторные MOSFET-ключи), а вот повышать (за счет некоторого снижения КПД) можно, особенно при установке более мощных транзисторов. Реально данная схема при указанных на схеме элементах работает приблизительно в диапазоне входного напряжения от 8 до 12 В (при этом выходное остается равным номинальному с точностью примерно 2,5 %).
Рассмотрим работу схемы. Единственный компонент, который мы еще не «проходили», — это логическая КМОП-микросхема K561ЛA7. Рассматривать мы ее будем в главе 13, а генератор прямоугольных импульсов, который на ней построен, — в главе 9. Сейчас нам достаточно знать, что она содержит внутри четыре логических элемента, и на выходе элементов D1/3 и D1/4 образуются противофазные прямоугольные импульсы, которые поочередно открывают транзисторные ключи с частотой примерно 60 кГц. В результате на вторичных обмотках трансформатора образуется высокое напряжение, которое дополнительно умножается вдвое на системе из диодов КД258, конденсаторов 4,7 мкФ и индуктивностей (дросселей) 390 мкГн.
Стабилизирующая часть схемы построена на приборе 6N139, который имеет внутри довольно сложную конструкцию и представляет собой транзисторный оптрон — подавая на вход (выводы 2, 3) напряжение, мы открываем гальванически развязанный от входа транзистор, и тогда на выходе (вывод 6) получаем напряжение, практически равное нулю. В результате все вместе работает так: если выходное напряжение схемы недопустимо повысилось, то ключ на транзисторе КТ605АМ открывается, на выходе оптрона появляется близкое к нулю напряжение, логические элементы D1/З и D1/4 при этом запираются, и на ключи ничего не подается. Напряжение на выходе снижается, ключ КТ605АМ запирается, напряжение на выходе оптрона становится близким к напряжению питания, и импульсы опять поступают на трансформатор.
Трансформатор намотан на ферритовом кольце с характеристиками, указанными на схеме. Обмотки наматываются медным обмоточным проводом ПЭВ-2 парами совместно, причем обратите внимание, что у входной пары обмоток соединен конец одной с началом другой, а у выходной — начала обеих обмоток. Подбором дополнительного резистора 2 кОм (на схеме помечен звездочкой и соединен пунктиром) выходное напряжение устанавливается более точно. Дроссель по питанию +9 В (390 мкГн) служит для защиты внешних сетей от помех (см. главу 5). Учтите, что схема довольно заметно «фонит» в радиодиапазоне, потому ее надо заключать в металлический экран, который должен быть соединен с входной (обозначенной на схеме, как «Общ. Вх») «землей» в одной точке, вблизи входного контакта на плате.
Для того чтобы поменять выходное напряжение, следует, во-первых, изменить коэффициент резистивного делителя в базе ключа на КТ605АМ. При этом, конечно, надо снижать номинал верхнего по схеме резистора (680 кОм), а не повышать — нижнего (15 кОм). Например, при выходном напряжении ±24 В номинал верхнего резистора должен составлять примерно 75–82 кОм. Но для хорошей работы преобразователя этого изменения недостаточно — для получения максимального КПД необходимо также изменить число витков во вторичных обмотках. Рассчитывать их следует гак: желаемое выходное напряжение нужно умножить на коэффициент 1,3, затем полученную величину поделить на 9 (входное напряжение) и умножить на 10 (число витков в первичной обмотке). Например, при выходном напряжении, равном ±24 В, число витков в каждой из вторичных обмоток должно быть равно 35 (при этом и вторичную, и первичную обмотки можно намотать более толстым проводом). При пониженном выходном напряжении можно упростить схему, отказавшись от умножителя напряжения (убрав последовательно включенные конденсаторы, подключив диоды по схеме рис. 4.4 и увеличив соответственно число витков вторичной обмотки), при этом КПД повысится.