Рис. 1.2. Примерные результаты проверки закона Ома
Показанные на графике результаты весьма приблизительны, т. к. вид кривой будет сильно зависеть от того, как именно выполнен проводник (R1 на рис. 1.2): намотан ли он плотно или редко на толстый массивный каркас или на тонкий, а также от температуры в комнате, сквозняка и еще от множества других причин. Именно такое непостоянство и смущало физиков — меняется не только ход кривой (т. е. ток в общем случае непропорционален напряжению), но вид и форма этой зависимости весьма непостоянны и меняются как при изменении условий внешней среды, так и для различных материалов.
Понадобился гений Георга Ома, чтобы за всеми этими деревьями увидеть настоящий лес: а именно понять, что зависимость тока от напряжения описывается элементарно простой формулой: I = U/R. А все несуразности проистекают от того, что сама величина сопротивления R зависит от материала проводника и от условий внешней среды, в первую очередь от температуры. Так, в нашем эксперименте загиб кривой вниз происходит потому, что при прохождении тока проводник нагревается, а сопротивление меди с повышением температуры увеличивается (примерно на 0,4 % на каждый градус). А вот сама величина этого нагрева зависит от всего, что угодно: намотайте провод поплотнее и заверните его в асбест, он будет нагреваться сильнее, а размотайте его и поместите на сквозняк — нагрев резко уменьшится.
В ознаменование заслуг Георга Ома единица измерения сопротивления так и называется — ом. Согласно формуле закона Ома, приведенной в предыдущем абзаце, 1 Ом есть сопротивление такого проводника, через который течет ток в 1 А при напряжении на его концах, равном 1 В. Обратная сопротивлению величина называется проводимостью и измеряется в сименсах, названных так в честь другого ученого: 1 Сименс = 1/Ом. В электронике почти всегда оперируют величиной сопротивления, так что сименсы мы в основном оставим для физиков, хотя иногда прибегать к ним приходится.
Сопротивление проводника зависит от его геометрических размеров: оно увеличивается пропорционально длине и уменьшается пропорционально площади сечения: R = ρ∙L/S. Большое практическое значение имеет коэффициент пропорциональности ρ — т. н. удельное сопротивление материала проводника. При определенной температуре (обычно берется 20 °C) эта величина почти постоянна для каждого материала. «Почти» я тут написал потому, что на самом деле эта величина сильно зависит от химической чистоты и даже от способа изготовления материала проводника. Поэтому для проводников употребляют очень чистые металлы, скажем, обычный медный провод изготавливают из меди с количеством примесей не более 0,1 % (как говорят, с чистотой в «три девятки»). Это позволяет уменьшить сопротивление такого провода и избежать лишних потерь на его нагрев.
Удельное сопротивление проводника, по определению, есть сопротивление (Ом) проводника единичной площади (м2) и длины (м). Если подставить эти величины в предыдущую формулу, вы получите размерность для удельного сопротивления Ом∙м2/м или просто Ом∙м. Практически в таких единицах измерять удельное сопротивление страшно неудобно, т. к. для металлов величина получается крайне маленькой — представляете сопротивление куба меди с ребром в 1 м?! На практике часто употребляют единицу в 100 раз больше: Ом∙см. Эта величина часто приводится в справочниках, но и она не слишком удобна для практических расчетов. Так как диаметр проводников измеряют обычно в миллиметрах (а сечение, соответственно, в квадратных миллиметрах), то на практике наиболее удобна старинная внесистемная единица Ом∙мм2/м, которая равна сопротивлению проводника сечением в 1 квадратный миллиметр и длиной 1 метр. Для того чтобы выразить «официальный» Ом∙м в этих единицах, нужно умножить его величину на 106, а для Ом∙см — на 104. Посмотрев в справочнике величину удельного сопротивления меди (0,0175 Ом∙мм2/м при 20 °C), мы легко можем вычислить, что сопротивление проводника с параметрами, приведенными на рис. 1.1, составляет около 45 Ом (проверьте!).
Заметки на полях
Надо сказать, что человечество весьма преуспело в изготовлении специальных материалов, имеющих коэффициент удельного сопротивления, мало зависящий от температуры. Это, прежде всего, специальные сплавы, константан и манганин, температурный коэффициент сопротивления (ТКС) которых в несколько сотен раз меньше, чем у чистых металлов. А для обычных стандартных углеродистых или металлопленочных резисторов ТКС составляет приблизительно 0,1 % на градус или меньше, т. е. примерно в 4 раза лучше, чем у меди. Есть и специальные прецизионные резисторы (среди отечественных это, например, С2-14, С2-29В, С5-61, проволочные С5-54В и др.), у которых этот коэффициент значительно меньше. Есть и другие материалы, у которых температурный коэффициент, наоборот, весьма велик (несколько процентов на градус, и при этом, в отличие от металлов, отрицателен) — из них делают т. н. термисторы, которые применяют в качестве чувствительных датчиков температуры. Для точного измерения температуры тем не менее используют чистые металлы — чаще всего платину и медь.