Замечание
И это не совсем точно — амперметр тоже имеет некоторое сопротивление и может быть представлен в виде еще одного последовательного резистора. Но, как и в случае вольтметра, этим на практике пренебрегают.
А что будет, если вывести движок переменника в крайнее левое положение? Я сразу приведу результат: амперметр покажет 33 мА, а вольтметр — 1,66 В. Пожалуйста, проверьте это самостоятельно! Если вы получите те же значения, то это будет означать, что вы усвоили закон Ома и теперь умеете отличать ток от напряжения.
В схеме на рис. 1.3 мы можем выделить, как показано пунктиром, ее часть, включив туда батарейку и переменный резистор R1. Тогда этот резистор (вместе с сопротивлением амперметра, конечно) можно рассматривать, как внутреннее сопротивление источника электрической энергии, каковым выделенная часть схемы станет для нагрузки, роль которой будет играть R2. Любой источник, как легко догадаться, имеет свое внутреннее сопротивление (электронщики часто употребляют выражение «выходное сопротивление») — хотя бы потому, что у него внутри есть провода определенной толщины.
Но на самом деле не провода служат ограничивающим фактором. В главе 2 мы узнаем, что такое мощность в строгом значении этого понятия, а пока, опираясь на интуицию, можно сообразить: чем мощнее источник, тем меньше у него должно быть свое внутреннее сопротивление, иначе все напряжение «сядет» на этом сопротивлении, и на долю нагрузки ничего не достанется. На практике так и происходит. Если вы попытаетесь запустить от набора батареек типа АА какой-нибудь энергоемкий прибор, питающийся от источника с низким напряжением (вроде настольного сканера или ноутбука), то устройство, конечно, не заработает, хотя формально напряжения должно хватать, — напряжение уменьшится почти до нуля. А вот от автомобильного аккумулятора, который гораздо мощнее, все получится, как надо.
Такой источник, у которого внутреннее сопротивление мало по отношению к нагрузке, называют еще идеальным источником напряжения (физики предпочитают название идеальный источник ЭДС, т. е. «электродвижущей силы», на практике, однако, это абстрактное понятие встречается реже, чем менее строгое, но всем понятное «напряжение»). К ним относятся, в первую очередь, все источники питания: от батареек до промышленной сети.
Наоборот, идеальный источник тока, как нетрудно догадаться, обязан обладать бесконечным внутренним сопротивлением — только тогда ток в цепи совсем не будет зависеть от нагрузки. Понять, как источник реального тока (не бесконечно малого) может обладать бесконечным выходным сопротивлением, довольно трудно, и в быту таких источников вы не встретите. Однако уже обычный резистор, включенный последовательно с источником напряжения (не тока!), как R1 на рис. 1.3, при условии, что сопротивление нагрузки мало (R2 << R1), может служить хорошей моделью источника тока. Еще ближе к идеалу транзисторы в определенном включении, и мы с этим разберемся позднее.
Источники напряжения и тока обозначаются на схемах так, как показано на рис. 1.4, а и б. Не перепутайте, логики в этих обозначениях немного, но так уж принято. А эквивалентные схемы (их еще называют схемами замещения) реальных источников приведены на рис. 1.4, в и г, где RB обозначает внутреннее сопротивление источника. Как можно использовать эти эквивалентные схемы при анализе реальных цепей? Для этого нужно окончательно разобраться, как рассчитываются схемы с параллельным и последовательным включением резисторов.
Рис. 1.4. Источники тока и напряжения:
а — обозначение идеального источника напряжения; б — обозначение идеального источника тока; в — эквивалентная схема реального источника напряжения; г — эквивалентная схема реального источника тока