Выбрать главу
Параллельное и последовательное соединение резисторов и расчет схем

Схемы постоянного тока любой степени сложности всегда можно представить как совокупность резисторов и идеальных источников напряжения и тока. Для их расчета достаточно знать два очень простых закона, названных по имени физика XIX столетия Густава Роберта Кирхгофа (1824–1887).

Первый закон Кирхгофа формулируется так: алгебраическая сумма токов в любом узле электрической цепи равна нулю. Или еще проще: сумма токов, направленных к данному узлу, равна сумме токов, направленных от него.

По сути он представляет одну из форм физических законов сохранения — ведь заряды не могут возникнуть из ничего, соответственно, сколько прибыло зарядов в некую точку, столько из нее обязано уйти.

Второй закон Кирхгофа гласит: алгебраическая сумма падений напряжения вдоль любого замкнутого контура электрической цепи равна нулю. Его легко проиллюстрировать на примере нашей схемы рис. 1.3 — там сумма падений напряжений на всех резисторах (включая внутреннее сопротивление батарейки, сопротивление амперметра, которым мы пренебрегали, и т. д.) равна напряжению батарейки. Иначе и быть не может— куда оно, напряжение батарейки, тогда денется?

Из законов Кирхгофа вытекают очень часто применяющиеся на практике правила последовательного и параллельного соединения резисторов: при последовательном соединении складываются сопротивления резисторов, а при параллельном складываются их проводимости, которые по определению, данному ранее, есть величины, обратные сопротивлению (рис. 1.5). Понять, почему правила именно таковы, можно, если рассмотреть течение токов в обоих случаях.

Рис. 1.5. Последовательное и параллельное соединение резисторов

• При последовательном соединении ток I через резисторы один и тот же, поэтому падения напряжения на них складываются (U = U1 + U2), что равносильно сложению сопротивлений.

• При параллельном соединении, наоборот, равны падения напряжений U, а складывать приходится токи (I = I1 + I2), что равносильно сложению проводимостей. Если вы не поняли сказанное, то посидите над рис. 1.5 с карандашом и бумагой и выведите выражения закона Ома для каждого из резисторов — и все станет на свои места.

Из этих определений вытекает также несколько практических правил, которые полезно заучить:

• При последовательном соединении:

— сумма двух резисторов имеет сопротивление всегда больше, чем сопротивление резистора с большим номиналом (правило «больше большего»);

— если номиналы резисторов равны, то суммарное сопротивление окажется вдвое больше каждого номинала;

— если номиналы резисторов различаются во много раз, то общее сопротивление примерно равно большему номиналу. Типичный случай: в примере на рис. 1.3 мы игнорируем сопротивления проводов и амперметра, т. к. они много меньше сопротивлений резисторов.

• При параллельном соединении:

— сумма двух резисторов имеет сопротивление всегда меньше, чем сопротивление резистора с меньшим номиналом (правило «меньше меньшего»);

— если номиналы резисторов равны, то суммарное сопротивление будет вдвое меньше каждого номинала;

— если номиналы резисторов различаются во много раз, то общее сопротивление примерно равно меньшему номиналу. Это также можно иллюстрировать на примере рис. 1.3, где мы игнорируем наличие вольтметра, включенного параллельно R2, т. к. его сопротивление намного больше сопротивления резистора.

Знание этих правил поможет вам быстро оценивать схему, не занимаясь алгебраическими упражнениями и не прибегая к помощи калькулятора. Даже если соотношение сопротивлений не попадает под перечисленные случаи, результат все равно можно оценить «на глаз» с достаточной точностью. При параллельном соединении, которое представляет большую сложность при расчетах, для такой оценки нужно прикинуть, какую долю меньшее сопротивление составляет от их арифметической суммы — именно во столько раз приблизительно снизится их общее сопротивление по отношению к меньшему.

Проверить это легко: рассмотрим ситуацию, когда сопротивления равны. В этом случае одно сопротивление составляет 1/2 часть их суммы, т. е. общее сопротивление должно снизиться вдвое, как и есть на самом деле. Возьмем более сложный случай: одно сопротивление пусть имеет номинал 3,3 кОм, второе — 6,8 кОм. В соответствии с изложенным мы будем ожидать, что общее сопротивление должно быть на 30 % меньше, чем 3,3 кОм, т. е. 2,2 кОм (3,3 составляет примерно одну треть от суммы 3,3+6,8, т. е. общее сопротивление должно быть меньше, чем 3,3, на треть от этого значения, равную 1,1 — в результате и получаем 2,2 кОм). Если мы проверим результат, полученный такой прикидкой в уме, точным расчетом, то мы получим в результате 2,22 кОм, что очень неплохо.