Сколько бы мы ни взяли радионуклида (тонну или миллиграмм), половина этого количества всегда распадается за одинаковый (для данного радионуклида) промежуток времени. Его-то и называют «периодом полураспада» и обозначают: Т1/2.
Повторим: этот временной промежуток уникален и неизменен для каждого радионуклида. Можно делать что угодно с тем же стронцием-90: нагревать, охлаждать, сжимать под давлением, облучать лазером, – всё равно половина любой порции стронция распадётся за 29,1 лет, половина оставшегося количества – ещё в течение 29,1 лет и так далее. Считается, что через 20 периодов полураспада радионуклид исчезает полностью.
Чем быстрее распадается радионуклид, тем он более радиоактивен, ведь каждый распад сопровождается выбросом одной порции ионизирующего излучения в виде альфа– или бета-частицы, иногда «в сопровождении» гамма-излучения («чистого» гамма-распада в природе не существует).
Но что значит «большая» или «маленькая» радиоактивность, в чём её измерить? Для этой цели используют понятие активность. Активность позволяет оценить интенсивность радиоактивного распада в цифрах. Если в секунду происходит один распад, говорят: «Активность радионуклида равна одному беккерелю (1 Бк)». А раньше использовали намного более крупную единицу – кюри: 1 Ки = 37 миллиардов Бк.
Конечно, сравнивать следует одинаковые количества разных радионуклидов, например 1 кг или 1 мг. Активность единицы массы радионуклида называют удельной активностью. Вот она-то, эта самая удельная активность, обратно пропорциональна периоду полураспада данного радионуклида (так, надо передохнуть).
Давайте сравним эти характеристики для самых известных радионуклидов (таблица 2.1).
Так почему же всё-таки стронций-90? Вроде бы ничем особенным не выделяется – так, серединка на половинку. И как раз в этом всё дело!
Сначала попробуем ответить на один (сразу предупреждаю) провокационный вопрос. Какие радионуклиды опаснее: короткоживущие или долгоживущие? Так, мнения разделились.
Рис. 2.1 Закон радиоактивного распада
С одной стороны, опаснее короткоживущие: они более активны. А с другой стороны, после быстрого распада «коротышей» проблема радиации исчезает.
Кто постарше, помнит: сразу после чернобыльской аварии больше всего шума было вокруг радиоактивного йода. Короткоживущий йод-131 подорвал здоровье многих чернобыльцев. Зато сегодня с этим радионуклидом проблем нет. Уже через полгода после аварии выброшенный из реактора йод-131 распался, даже следа не осталось.
Теперь о долгоживущих изотопах. Их период полураспада может составлять миллионы и миллиарды лет. Такие нуклиды малоактивны. Поэтому в Чернобыле не было, нет и не будет проблем с радиоактивным загрязнением территорий ураном. Хотя по массе выброшенных из реактора химических элементов лидировал именно уран, причём с большим отрывом. Но кто же измеряет радиацию в тоннах? По активности, по беккерелям уран не представляет серьёзной опасности: слишком долгоживущий.
И вот теперь мы подошли к ответу на вопрос о стронции-90. У этого изотопа период полураспада равен 29 лет. Очень «противный» срок, ибо соизмерим с продолжительностью жизни человека. Стронций-90 достаточно долгоживущий, чтобы загрязнить территорию на десятки и сотни лет. Но не настолько долгоживущий, чтобы иметь низкую удельную активность. По значению периода полураспада к стронцию очень близок цезий-137 (30 лет). Вот почему при радиационных авариях именно эта «сладкая парочка» создаёт большую часть «долгоиграющих» проблем. Кстати, в негативных последствиях чернобыльской аварии гамма-активный (потерпите три странички) цезий виновен сильнее «чистого» бета-излучателя стронция.
А пройдет лет шестьсот, и в зоне чернобыльской аварии не останется ни цезия, ни стронция. И тогда на первое место выйдет… Вы уже догадались, верно? Плутоний!
Таблица 2.1 Радиационные характеристики некоторых радионуклидов