Сегодня исследование любого объекта — от элементарных частиц и разлетающихся галактик до биологических и социальных законов, которым подчиняется человек и общество, означает, прежде всего, проникновение в противоречивую природу этого объекта или явления. И чем глубже это проникновение, тем вернее теоретическое понимание исследуемых процессов. Тут и дуализм элементарных частиц, проявляющих себя как единство вещества и поля, и силы гравитационного притяжения, и силы электрического и магнитного отталкивания, и все это имеет место в космосе, все формирует галактики.
Подобные примеры из любой области изучения неживой и живой природы может найти при желании сам читатель, дав себе труд проанализировать развитие любой системы из окружающей его действительности.
Великолепная пятерка
В науке нельзя все время делать открытия. Время от времени ученые должны останавливаться, осматриваться вокруг, учиться, накапливать знания, чтобы потом снова устремляться вперед, в неизвестное.
Когда физики, астрономы и математики, а в «добрые старые времена» все указанные ипостаси умудрялись уживаться в одном лице, как следует вчитались в несравненные ньютоновские «Начала», они обнаружили немало неожиданного. В этой поразительной книге при всей ее целостности и законченности оказалась масса незавершенных идей, множество задач, одни из которых были сформулированы и полностью решены, другие решены приближенно, а третьи вообще остались лишь с намеченным путем для решений. Вот где было просторно последователям.
Например, закон всемирного тяготения позволил И. Ньютону сформулировать и полностью решить «задачу двух тел», как стали называть математический расчет движения двух притягивающихся материальных частиц. Эта задача была особенно важна для астрономии, поскольку позволяла вычислять, к примеру, движение Луны в поле земного тяготения или движения любой планеты в зависимости от притяжения Солнца.
Решение «задачи двух тел» позволило И. Ньютону подтвердить справедливость двух первых законов И. Кеплера и внести уточнение в третий закон. Однако решение уравнений движения отдельной планеты в поле тяготения Солнца без учета сил тяготения остальных небесных тел оказывалось справедливым лишь для коротких промежутков времени. От года к году к такому результату добавлялись ошибки из-за неучтенных малых сил взаимного тяготения других членов солнечного семейства. Движения планет отклонялись от кеплеровских эллиптических орбит, и таблицы приходилось пересматривать и вычислять заново. Нет, «задача двух тел» оказывалась слишком приближенной математической моделью.
В начале XVIII века астрономы насчитывали в солнечном семействе 18 законных членов. Прежде всего это было само Солнце, затем 6 планет: Меркурий, Венера, Земля, Марс, Юпитер и Сатурн, а также 10 планетных спутников: Луна, 4 спутника Юпитера и 5 спутников Сатурна. Последним самостоятельным членом солнечной системы считалось кольцо Сатурна, природа которого была в те времена астрономам неизвестна. Вся эта компания, связанная между собой узами тяготения, которые определяли их взаимные перемещения, в общем, была уже довольно неплохо изучена человечеством. Для окончательной уверенности в беспредельном могуществе математики как метода познания и физической теории, как библии этого метода оставалось только решить задачу:
«Дано — 18 небесных тел, положения и движения которых в данный момент известны.
Требуется — определить с помощью математики из их взаимных притяжений положения и движения каждого из них для любого заданного момента и показать, что результаты вычислений согласуются с наблюдениями».
Все! Решив оную задачу, человечество могло бы почить на лаврах, переписав лик бога Саваофа на лик И. Ньютона. Однако представляет ли себе читатель, что значит достаточно строго решить задачу движения 18 взаимосвязанных небесных тел? Давайте попробуем только перечислить некоторые трудности, встающие на пути такого решения.
Итак, 18 членов солнечной системы. Каждое из них, если считать его абсолютно твердым, то есть не подверженным никаким деформациям, обладает степенями свободы. Это, конечно, понятно — ведь они могут не только двигаться в трех различных направлениях, но и вращаться вокруг трех взаимно перпендикулярных осей. Следовательно, для определения положения тела в пространстве мы должны в каждый момент времени задавать числовые значение 3 координат и 3 углов поворота. Всего 6 неизвестных. Однако сам процесс движения характеризуется скоростью изменения во времени всех этих 6 величин. Значит, еще 6 неизвестных. Помножив 12 неизвестных на 18 членов солнечного семейства, мы получаем миленькую системку с 216 неизвестными.