Опираясь на неоднородность наблюдаемого распределения плотности вещества в обозримом пространстве, Я. Оорт считает, что галактики «образовались из неоднородностей в расширяющейся вселенной». Эти неоднородности могли расширяться только до определенной стадии. Пока не набрали необходимой массы и не стали под действием собственной гравитации сжиматься. Дальше тип образующейся галактики зависел уже от величины углового момента протогалактики.
При быстром вращении центробежные силы не позволяли диффузному веществу сгуститься плотно. Его оставалось довольно много во внешних областях, и галактика получалась спиральной.
При медленном вращении первоначальной неоднородности галактика получалась эллиптической. Именно в данном последнем типе образования имелись возможности для перехода всего вещества в звезды. Это был важный вывод, потому что, как обнаружил Б. Кукаркин, только спиральные галактики богаты диффузным веществом; в эллиптических его не наблюдается совсем. Эллиптические галактики состоят из одних звезд. Я. Оорт считает, что первичные звезды образовывались в галактике сначала совершенно хаотично. Под действием начальных неоднородностей гравитационного поля они многократно перемешивались и лишь постепенно, под действием сил взаимного притяжения, собирались к центру.
Это предположение хорошо согласовывалось с наблюдениями. Действительно, ведь сферической составляющей звездного населения являются старые звезды. Часть оставшегося газа, не сконцентрировавшегося в звезды на раннем этапе, образовала скорее всего в плоскости Галактики тонкий диск с более плотной концентрацией к центру. Здесь тоже стали образовываться звезды. Сначала в ядре, где газ был плотнее, а потом и на периферии.
Постепенно процесс звездообразования замедлялся. Конечно, не исключено, что он, может, продолжается и сейчас. Но скорость его должна быть чрезвычайно малой.
И опять предполагаемый механизм подтверждается результатами наблюдений. В ядре Галактики звезды постарше, а совсем молодые, образовавшиеся во второй период эволюции, распределялись в спиральных рукавах.
Теперь становится понятным, почему все звезды, родившиеся из газа, который собрался в плоский диск, соответствуют наблюдаемому в Галактике населению одного только первого типа.
Отныне сомнений в том, что магнитные поля у галактик есть, ни у кого не возникало. Прониклись космогонисты уважением и к роли магнитных сил в процессах эволюции. Вот если бы еще понять, откуда магнитные поля взялись.
Тут придется еще вернуться к гипотезе Ф. Хойла. Некогда он высказался в общем виде о том, что, дескать, магнитное поле галактики — это общее межгалактическое магнитное поле, усиленное сжатием диффузного вещества при его конденсации, а затем закрученное вращением образовавшихся галактик. Эту идею подхватили и разработали московский астрофизик Н. Кардашев и английский радиоастроном Дж. Пиддингтон. У них получалось, что звездные системы уже рождаются с готовым магнитным полем.
Затем советский физик С. Пикельнер, используя аппарат космической электродинамики, попытался нарисовать картину образования спиральных рукавов. Получилось неплохо. Более того, сквозь контуры предварительного чертежа стала проглядывать новая магнитно-гравитационная гипотеза. Она содержала смелые решения, много интересных выводов, но и только: количественно концы с концами не сходились. Для поддержания спиральных рукавов магнитные поля должны были быть гораздо более сильными, чем те, которые существуют в галактиках. «Мы, кажется, начинаем понимать кое-что в основных чертах распределения и движения звезд и даже чувствуем, что имеем некоторый набросок картины того, как могла возникнуть и эволюционировать наша звездная система. Кроме того, мы можем понять, почему межзвездный газ концентрируется в тонкий слой и почему этот слой вращается. Но на этом кончается наше понимание поведения газовой составляющей Галактики.
Мы не понимаем ни происхождения ее спиральной структуры, ни даже того, каким образом эта структура может сохраняться.
Мы не знаем причин движения газа прочь от ядра в центральных областях и не знаем, почему плотность газа так низка вблизи 4 кпс от центра.
Мы не знаем, почему в быстро вращающемся диске ядра вещество, по-видимому, находится в состоянии, отличном от того, которое мы встречаем в других местах.
Мы не знаем также, почему этот диск имеет исключительно резкую внешнюю границу.