Но продолжим обсуждение. Читатель, конечно, понимает, что ни один космолог не угомонится, зная обстановку на сотой секунде «творческой работы большого взрыва». Он захочет знать ее и на десятой и на первой секунде. Правда, возможные носители информации вроде бы исчерпаны. Хотя мы забыли о самых модных во второй половине XX столетия частицах: о нейтрино и антинейтрино…
Если бы удалось поймать и подсчитать нейтрино, те самые, что образовались в самом-самом начале «начала», то со ступеньки времени 100 секунд мы перейдем на уровень 0,3 секунды существования «горячей» модели. Почему именно 0,3 секунды? Потому что как раз в этот момент плотность взорвавшегося илема должна была достигнуть величины примерно 10 миллионов граммов на кубический сантиметр. Это как раз та плотность, которая является границей для нейтрино. При большей плотности эти неуловимые частицы, «придуманные» некогда чисто умозрительно Вольфгангом Паули, а рассчитанные и названные Энрико Ферми, не способны пробиться через вещество. Зато при меньшей плотности вещества они практически им не поглощаются и должны были бы «дожить» до нашей эпохи.
Однако поймать «реликтовые» нейтрино — это задача, которую решить пока не удается. Эти частицы настолько слабо взаимодействуют с веществом, что проходят, как сквозь пустое пространство, через планеты и звезды, ни с чем не реагируя, ничем не отклоняясь и не рассеиваясь.
Чтобы уловить «реликтовые» нейтрино, нужно почти в миллион раз повысить чувствительность предельных в наши дни измерений. Это задача чрезвычайной трудности. Она настолько трудна, что даже перспективы ее решения сегодня еще весьма туманны.
Правда, три года назад проблема регистрации нейтрино, излучаемых Солнцем, тоже казалась удручающе сложной. Между тем сейчас уже почти ни у кого нет сомнений, что именно нейтринной астрономии принадлежит будущее в исследовании Солнца, и притом будущее, не столь отдаленное. В «окуляре» нейтринного телескопа мы увидим недра нашей звезды. (Нейтринный телескоп вряд ли вообще можно назвать телескопом в обычном смысле, настолько он не похож по внешнему виду на традиционный астрономический инструмент. Но коль скоро название сохранилось, то почему не назвать счетчики «окуляром»?) Если удастся уловить «холодные» реликтовые нейтрино, это будет едва ли не главным доказательством в пользу «горячей» модели.
И наконец последний, хотя и вполне «законный», вопрос. Ну хорошо, предположим, что мы научились вылавливать и фиксировать «холодные» нейтрино и подошли на 0,3 секунды к «большому взрыву», а нельзя ли еще ближе?.. После 0,3 секунды жизни плотность «первичного кома» материи больше, как мы говорили, 10 миллионов г/см3. Даже нейтрино (!) не в состоянии вырваться из такого «теста». Как же быть?
Здесь мы приблизились к последнему реальному, хотя пока и не в практическом смысле, информационному агенту: гравитационным волнам. Они — голубая мечта физики завтрашнего дня. Да, в наши дни время от времени в печати появляются одиночные сообщения об экспериментах по приему гравитационного излучения, но все эти сообщения пока еще недостаточно убедительны, чтобы им можно было надежно поверить.
Гравитационные волны должны обладать еще большей проникающей способностью, чем нейтрино, и должны доходить до нас из областей, плотность которых описывается числом граммов на кубический сантиметр, содержащим девяносто три нуля после значащей цифры (4·1093 г/см3)! Конечно, цифра эта может и не пробудить в нас особых эмоций. Но автору становится не по себе. При таких плотностях мы настолько близко подбираемся к вожделенному «нуль-пункту», что остатком времени можно пренебречь. Есть предположение, что при плотностях больше 1093 г/см3 законы нашей физики перестают годиться. Нарушаются фундаментальнейшие принципы, даже такие, например, как принцип причинности. Впрочем, чтобы не удариться в чистую фантастику, автор предпочитает ограничиться сказанным и не раскрывать перед читателем горизонты сверхплотного мира.