Кто же такой Александр Фридман, вступивший в спор с «самим Эйнштейном»?
Александр Александрович Фридман родился 17 июня 1888 года в Петербурге в артистической семье. Отец его был музыкант и композитор, мать — дочерью чешского композитора Воячека.
Мальчиком Фридман воспитывался у родственников отца. Одно время, в тревожные годы первой русской революции, он даже жил с родственниками в царской резиденции — Зимнем дворце. Сохранились воспоминания о том, как, восхищенный поднимающейся грозной волной, восемнадцатилетний Саша Фридман писал в Зимнем листовки. Друг-приятель его Володя Смирнов (впоследствии видный советский математик, академик, лауреат Государственной премии Владимир Иванович Смирнов) приходил, забирал прокламации и распространял их по городу.
В 1905 году вместе с Тамаркиным (тоже будущим профессором математики) Фридман в последнем классе гимназии пишет свою первую научную работу, посвященную числам Бернулли. Публикация появилась год спустя в солидном научном журнале, который издавали такие известные математики, как Клейн и Гильберт. В том же 1906 году Александр Фридман окончил гимназию с золотой медалью и поступил в Санкт-Петербургский университет на математическое отделение физико-математического факультета.
На последних курсах Фридмана увлекла динамическая метеорология — сложная математическая теория движения атмосферы. Математический аппарат динамики сплошных сред как раз соответствовал интересам молодого человека. Надо сказать, что в области дифференциальных уравнений в частных производных, которыми описывались процессы в атмосфере, русская математическая школа тех лет занимала ведущее место в мировой науке.
Дифференциальными уравнениями называются математические соотношения, которые связывают, например, скорость изменения какой-либо величины со значением самой величины. В уравнения могут входить и ускорения, определяющие «скорость» изменения скорости. Установив зависимость между заданной величиной, скоростью ее изменения и ускорением, математик решает уравнение и получает формулу, по которой значение искомой величины можно найти в любой момент времени. Если вы представите себе эти вычисления, то легко поймете, что дифференциальные уравнения способны описывать конкретные явления природы в самом широком и общем виде.
Обычно математики не обращают внимания на то, какие прикладные вопросы выясняются «чистым» решением дифференциальных уравнений. Однако А. Фридман придерживался иного взгляда. Профессор А. Ф. Гаврилов писал в своих воспоминаниях.
«А. А. Фридман имел редкие способности к математике, однако изучение одного только математического мира чисел, пространства и функциональных соотношений в них его не удовлетворяло. Ему было мало и того мира, который изучался теоретической и математической физикой. Его идеалом было наблюдать реальный мир и создавать математический аппарат, который позволил бы формулировать с должной общностью и глубиной законы физики и затем, уже без наблюдения, предсказывать новые законы».
Фридман удивительно умел охватить реальные явления в целом. Понимая, что любое познание есть лишь приближение к истине, он выработал свой стиль работы, ставший сейчас основным в теоретических исследованиях.
На первом этапе он считал задачей теоретика разумное упрощение — идеализацию рассматриваемой задачи. Все второстепенное должно быть отброшено. Этот этап завершался составлением систем уравнений или неравенств, трактующих задачу в чистом виде на языке математики. Затем начинался второй этап — решение! Здесь уже никакой физики — чисто математическая работа. И лишь когда окончательные формулы выведены, оценить их достоинство и степень упрощения может только эксперимент. Только опыт подтверждает право теории на существование.
С портрета смотрят на нас внимательные, иронические и грустные глаза из-под стекол очков. Интеллигент до мозга костей, он с первыми выстрелами 1914 года добровольно пошел воевать. Фридман попал в авиационный отряд, зачисленный туда «нижним чином». Всякая война для солдата означает конец науке гражданской. Но Фридман не просто солдат. «В настоящее время я занимаюсь вопросом об определении температуры и давления, когда заданы скорости… — пишет он с фронта. — Затем собираюсь написать, если вы найдете это удобным, для Географического сборника небольшую заметку о причинах возникновения и исчезновения вихрей в атмосфере, хотя бы в общей математической форме, — было бы очень интересно».