Выбрать главу

А вот другое письмо: «В отряде, скуки ради, я немного учусь летать». И немного ниже: «За разведки я представлен к Георгиевскому оружию, но, конечно, получу ли — большой вопрос. Конечно, это как будто мелочность с моей стороны — интересоваться такими делами, как награда, но что поделаешь, так видно уж устроен человек, всегда ему хочется немного „поиграть в жизнь“».

Широта интересов Александра Александровича была поразительна. Он работал в области теоретической метеорологии и электродинамики. В период войны 1914 года получил звание летчика и занялся теорией бомбометания. Написал две основополагающие работы по космологии. И в июле 1925 года совершил вместе с пилотом П. В. Федосеенко рекордный полет на аэростате.

Воспитанник Петербургского университета, он одним из немногих ученых пришел на службу революционному пролетариату Петрограда и до самого конца, до самой смерти — нелепой и случайной, от брюшного тифа в 1925 году — оставался верным своему народу.

Три модели Александра Фридмана

Знаменитые уравнения тяготения Эйнштейна представляют собой систему из десяти дифференциальных уравнений в частных производных. Грубо говоря, они показывают, как распределение масс в пространстве влияет на кривизну этого пространства. Иными словами, они показывают, как метрика пространства зависит от распределения и движения масс и как, в свою очередь, та же метрика определяет движение вещества.

Из-за чисто математических трудностей система уравнений Эйнштейна не поддавалась общему решению. Приходилось идти на различные упрощения.

Те, кто учился и работал рядом с Фридманом, часто вспоминают его любимое присловье: «А нельзя ли здесь чего-нибудь откинуть?» Не с этих ли позиций подошел он к решению уравнений Эйнштейна? Впрочем, он не откидывал лямбда-члена системы Эйнштейна, он просто решал уравнения. Оказалось, что при этом возможно множество решений. Особенно интересен случай при λ = 0. Решение это настолько интересно, что стоит остановиться на нем поподробнее.

В своей первой работе А. Фридман сохранил все предположения Эйнштейна, за исключением стационарности, и исследовал получившиеся нестационарные однородные изотропные модели с замкнутым пространством постоянной положительной кривизны. При этом ему удалось в отличие от Эйнштейна получить нетривиальные решения уравнений и без космологического члена. Что же представляли собой теоретические модели, полученные петроградским математиком?

Прежде всего они были нестационарны. Радиус кривизны и плотность вещества во вселенной менялись со временем. И от того, какой величины выбрать среднюю плотность, зависела судьба модели мира.

Представим себе ρ = ρкр: средняя плотность равна некоторому определенному критическому значению. Его можно вычислить по несложной формуле, воспользовавшись значениями некоторых «мировых постоянных». Но сейчас нам это не нужно. Достаточно, что такое значение существует. При критической плотности вещества пространственная часть четырехмерного мира — плоская. Однако это не неподвижная модель мира Минковского, о которой мы уже говорили. Фридмановское решение делало вселенную подвижной! Все расстояния в пространстве растут, то есть частицы разлетаются в разные стороны со скоростью, которая для малых расстояний пропорциональна приблизительно самому расстоянию.

Если для наглядности отказаться от одного измерения и перейти к двухмерному пространству, меняющемуся во времени, то такую модель можно представить себе в виде равномерно растягиваемой в разные стороны резиновой пленки. Пылинки, налипшие на ее поверхности, будут играть роль звездных систем — галактик.

Посмотрите на наш рисунок. На нем изображен график изменения расстояний в такой модели. Сухая абстрактная кривая на самом деле хранит в себе целый приключенческий роман, только в зашифрованном виде.

Начнем расшифровку с крайней левой точки нашего графика. Она убедительно говорит, что некогда все расстояния между любыми двумя точками во вселенной были пренебрежимо малыми. Не существовало ни пространства, ни времени, ни звезд, ни планет, ни туманностей… Ничего!.. Это область нулевого времени. Потом сработал некий механизм, и стало появляться вещество, частицы его стали разлетаться, начался отсчет времени, стало расширяться пространство — расстояния между любыми двумя частицами вещества стали расти со скоростью, пропорциональной самому расстоянию. Это значит, что далекие частицы разлетаются с большей скоростью, близкие — с меньшей.