Выбрать главу

Для растягивающейся пленки такое утверждение сомнений не вызывает. Отметьте одну из пылинок на ее поверхности и представьте, что это вы — наблюдатель. Когда поверхность пленки увеличивается, то ближайшая к вам пылинка будет удаляться от вас с какой-то вполне определенной скоростью. Более далекая покажется вам куда более шустрой. Скорость ее будет больше, чем ближайшей, и так далее.

В дальнейшем это решение использовали Эйнштейн и де Ситтер. И потому иногда эту простейшую модель называют именем этих ученых.

Но в статье Фридмана было и более «трагическое» решение. Он предположил, что средняя плотность вещества во вселенной больше критической. Прежде всего это потребовало отказа от эвклидова пространства и перехода к сферическому, риманову трехмерному пространству, да еще с переменным радиусом кривизны.

При этом начало, то есть пресловутый «нуль-пункт», ничем не отличалось от начала предыдущей модели.

Но дальше все шло не так. Радиус неэвклидова сферического пространства, как вы можете видеть из следующего рисунка, не увеличивался бесконечно. В точке M он достигал максимума, а потом снова уменьшался до нуля. Это означало, что в истории расширяющейся вселенной должен наступить момент, когда «разбегание» прекратится, после чего все пойдет в обратном направлении. Начнется сжатие. И через некоторое время планеты, звезды и галактики снова сольются в единый комок праматерии. Эта модель получила название закрытой.

В 1924 году из-под пера А. Фридмана вышла новая работа, посвященная теории Эйнштейна. Называлась она «О возможности мира с постоянной отрицательной кривизной». В новой работе он исследовал уравнения Эйнштейна, предположив, что плотность вещества во вселенной меньше критической. Получилась новая модель с неэвклидовой геометрией — неограниченно расширяющееся пространство отрицательной кривизны. Гиперболическое пространство Лобачевского, вызывавшее столько насмешек при жизни Великого Геометра, получило право на существование наравне с эвклидовым и римановым. Радиус пространства Лобачевского рос немного быстрее, чем в первой модели. Чтобы показать это, мы постарались выпрямить кривую третьего графика, который вы видите на предыдущей странице.

Таковы три фридмановские модели вселенной. Все они начинаются с нулевого радиуса. Все расширяются. Две из них утверждают ненулевую кривизну пространства…

Но как поверить в эти теоретические рассуждения? Как убедиться в том, что вселенная, которую человечество испокон веков видит одной и той же, на самом деле находится в состоянии непрерывного движения, расширения, разлетания… Как понять, что пусть в далеком прошлом, но существовал такой момент, когда весь мир был сжат в точку? Момент начала всего, даже нашего времени?.. Как, наконец, убедиться в том, что пространство, окружающее нас, обладает кривизной? И какую из трех моделей Фридмана принять в качестве наиболее близкой к объективной реальности?

Эти вопросы буквально не давали спать по ночам теоретикам. Не только физики, не только астрономы и математики оказались втянутыми в дискуссию. Спор особенно обострился, когда в него вступили философы, а за ними и теологи, не желающие упустить возможности сказать и свое слово о науке с позиций религии… Вот уж поистине «куда конь с копытом, туда и рак с клешней»… И если у читателя не иссякло терпение, то автор рад ему сообщить, что последующие главы как раз и будут посвящены разрешению указанных недоумений и вопросов.

Вот оно, «еще одно великое открытие»

История открытия, о котором пойдет речь в этой главе, началась в 1912 году, когда американский астроном Весто Мелвин Слайфер предпринял на ловелловской обсерватории исследование спектров туманностей. В то время люди еще не знали точно, что собой представляют эти странные туманные пятнышки на небе — то ли действительно облака тумана, то ли скопления невообразимо далеких звезд. Не было уверенности и в том, насколько далеки от нас эти плохо различимые объекты и принадлежат ли они к нашей Галактике или находятся за ее пределами.

Впрочем, приступая к работе, Слайфер все-таки имел определенное мнение. Касалось оно спектров туманностей. Американский астроном был убежден, что примерно половина спектров всех объектов наблюдения должна быть сдвинута в красную сторону, а половина в фиолетовую.