На схемах логические элементы с открытым коллектором обозначаются, как это показано на рис. 2.25.
Рис. 2.25. Условное графическое обозначение микросхемы с открытым коллектором на выходе
Недостатком приведенной схемы объединения выходов нескольких микросхем на один провод является низкая скорость передачи информации, обусловленная затянутым передним фронтом. Это обусловлено тем, что ток заряда паразитной емкости шины проходит через сопротивления R1 и R2, которые много больше сопротивления открытого транзистора, обеспечивающего разряд этой емкости. Величину сопротивления нагрузки R1 и R2 невозможно снизить меньше некоторого предела, определяемого напряжением низкого уровня, который определяется в свою очередь допустимым током через выходной транзистор. В результате заряд происходит заметно медленнее, чем разряд. Временные диаграммы напряжений на входе и выходе микросхемы с открытым коллектором приведена на рис. 2.26.
Рис. 2.26. Временные диаграммы напряжений на входе и выходе микросхемы с открытым коллектором
Обратите внимание, что нагрузочные сопротивления включены на обоих концах проводника, образующего шину. Это позволяет уменьшить отражения сигнала от ненагруженных концов линии передачи сигнала, образованной данным проводником. Сопротивления резисторов R1 и R2 должны быть равны волновому сопротивлению этой линии передачи.
Естественным решением проблемы затягивания переднего фронта сигнала было бы включение транзистора в верхнее плечо схемы, но при этом возникает проблема сквозных токов, из-за которой невозможно соединять выходы цифровых микросхем непосредственно, и решением которой как раз является использование микросхем с открытым коллектором на выходе (монтажное «ИЛИ»). Причина возникновения сквозных токов поясняется на рис. 2.27. Показана ситуация, когда микросхема № 2 пытается сформировать на выходе уровень логической единицы, а микросхема № 1 — уровень логического нуля. Буквами «3» и «О» для выходных транзисторов обозначены закрытое и открытое состояния соответственно.
Рис. 2.27. Путь протекания сквозного тока Iскв при непосредственном соединении выходов цифровых микросхем
Эта проблема исчезает, если появляется возможность закрывать оба выходных транзистора, как в верхнем, так и в нижнем плече выходного каскада. Если оба транзистора закрыты, то такое состояние выхода микросхемы называется третьим состоянием или z-состоянием (высокоомным состоянием). Возможность переводить выход в третье состояние появляется в специализированных микросхемах. Принципиальная схема выходного каскада микросхемы с тремя состояниями на выходе приведена на рис. 2.28.
Рис. 2.28. Принципиальная схема выходного каскада микросхемы с тремя состояниями на выходе
В этой схеме вводится дополнительный управляющий вход, который может запирать оба выходных транзистора. В приведенной схеме это осуществляется закорачиванием баз обоих транзисторов на общий провод при помощи многоколлекторного транзистора, на базу которого сигнал управления подается через резисторы R1 и R2.
На схемах логические элементы с тремя состояниями на выходе обозначаются, как это показано на рис. 2.29.
Рис. 2.29. Условное графическое обозначение микросхемы с тремя состояниями на выходе
Часто в микросхеме, содержащей несколько выходных каскадов с тремя состояниями, объединяют управляющие сигналы всех выходов в один провод. Такие микросхемы используются для подключения многоразрядных устройств к шине микропроцессора и поэтому называются шинными формирователями. Шинные формирователи изображаются на схемах так, как показано на рис. 2.30.
Рис. 2.30. Условное графическое обозначение шинного формирователя
В данной главе были рассмотрены простейшие логические элементы, а также устройства суммирования двоичных сигналов и устройства, которые позволят подавать на входы сумматора двоичные коды от различных источников информации. Кроме того, рассмотрены устройства, позволяющие подавать результат суммирования к различным средствам запоминания двоичных кодов.