Сигнал записи WR# позволяет записать логические уровни, присутствующие на информационных входах, во внутреннюю ячейку ОЗУ. Сигнал чтения RD# позволяет выдать содержимое внутренней ячейки памяти на информационные выходы микросхемы. В приведенной на рис. 3.27 схеме невозможно одновременно производить операцию записи и чтения, но это в большинстве случаев и не нужно. Схема на рис. 3.27 ориентирована на применение микропроцессорной системы с одной шиной, по которой в разные моменты времени будет осуществляться или запись, или чтение информации.
Конкретная ячейка микросхемы, в которую будет записываться информация, выбирается при помощи двоичного кода — адреса ячейки. Объем памяти микросхемы зависит от количества ячеек, содержащихся в ней.
Количество адресных выводов микросхемы ОЗУ однозначно определяется количеством находящихся в ней ячеек памяти. Исходя из этого, количество ячеек памяти М в микросхеме можно определить по количеству адресных выводов N. Для этого необходимо возвести число 2 в степень, равную количеству адресных выводов микросхемы:
М = 2N
Вывод выбора кристалла CS позволяет объединять несколько микросхем для увеличения объема памяти ОЗУ. Пример объединения четырех микросхем ОЗУ с помощью дешифратора приведен на рис. 3.29. При этом общий объем памяти увеличивается в четыре раза.
Рис. 3.29. Схема ОЗУ, построенного на нескольких микросхемах памяти
Статические ОЗУ требуют для своего построения большой площади кристалла, поэтому их емкость (количество запоминающих элементов) относительно невелика. Статические ОЗУ применяются для построения микроконтроллерных систем из-за простоты схемы запоминающих устройств на их основе и возможности работать при сколь угодно больших длительностях управляющих сигналов, вплоть до статического режима. Это позволяет свободно выбирать тактовую частоту и упрощает процедуру отладки микропроцессорной системы. Кроме того, статические ОЗУ применяются для построения кэш-памяти в универсальных компьютерах, т. к. они обладают более высоким быстродействием по сравнению с динамическими ОЗУ.
Временные диаграммы чтения данных из статического ОЗУ, такие же, как аналогичные диаграммы для рассмотренного ранее ПЗУ. Временные диаграммы записи в статическое ОЗУ и чтения из него приведены на рис. 3.30.
Рис. 3.30. Временная диаграмма обращения к ОЗУ, принятая для схем, совместимых с микропроцессорами фирмы Intel
На рис. 3.30 стрелочками показана последовательность, в которой должны формироваться управляющие сигналы. На этом рисунке RD — это сигнал чтения; WR — сигнал записи; А — сигналы шины адреса (так как отдельные биты в шине адреса могут принимать разные значения, то показаны пути перехода сигнала как в единичное, так и в нулевое состояние); DI — входная информация, предназначенная для записи в ячейку ОЗУ, расположенную по адресу A1; DO — выходная информация, считанная из ячейки ОЗУ, расположенной по адресу А2.
Временная диаграмма, приведенная на рис. 3.30, не единственная, применяемая для построения микропроцессорных систем. Она была предложена фирмой Intel и получила широкое распространение. Для обращения к ОЗУ применяется и временная Диаграмма, предложенная фирмой Motorola. Эта временная диаграмма предполагает наличие постоянно присутствующего синхросигнала и сигнала, который определяет операцию, которую необходимо выполнить (запись или чтение).
Временная диаграмма микросхемы, работающей по описанному выше принципу, приведена на рис. 3.31. На этом рисунке стрелочками показана последовательность, в которой должны формироваться управляющие сигналы, при этом R/W — сигнал выбора операции записи или чтения; DS — сигнал стробирования данных; А — сигналы адресной шины (так как отдельные биты в шине адреса могут принимать разные значения, то показаны пути перехода сигнала как в единичное, так и в нулевое состояние); DI — входная информация, предназначенная для записи в ячейку ОЗУ, расположенную по адресу A1; DO — выходная информация, считанная из ячейки ОЗУ, расположенной по адресу А2.
Рис. 3.31. Временная диаграмма обращения к ОЗУ, принятая для схем, совместимых с микропроцессорами фирмы Motorola