Выбрать главу

Планеты со спутниками — низшая, нулевая ступень.

Затем идут звезды. Вокруг всех звезд, по примеру Солнца, должны обращаться планеты, создавая системы первого порядка.

Все звезды в совокупности должны объединяться в систему второго порядка. (Сейчас мы называем такие системы галактиками.)

Дальше порядки все повышаются и повышаются до бесконечности, образуя «иерархию систем».

Может показаться наивным? Но еще совсем недавно существовала планетарная модель атома системы а-ля Ламберт. А в космогонии представления Ламберта сыграли роль выдающуюся.

Менее чем через полвека Вильям Гершель доказал существование единой системы звезд — Галактики. А еще полтора века спустя американский астроном Эдвин Пауэлл Хаббл сообщил, что маленькое пятнышко Туманности Андромеды на самом деле такая же огромная система второго порядка, как и наш Млечный Путь. Сейчас таких галактик отыскано на небе великое множество. Родилось новое ответвление древней науки — Внегалактическая астрономия. Хаббл разделил существующие галактики на эллиптические, спиральные и неправильные.

Но приходит время, когда ощущается потребность в более строгой классификации систем второго порядка! И уже пришло время для построения системы третьего порядка — Метагалактики.

Когда это будет сделано окончательно — сказать трудно. Благодаря развитию радиоастрономии мы проникаем с каждым годом все глубже и глубже во вселенную. Сейчас радиотелескопы способны зафиксировать такую порцию радиоволн, которая при переводе ее в оптический диапазон дает звезду тридцатой звездной величины.

Между тем даже крупнейшие рефлекторы мира способны «увидеть» лишь звезды двадцать третьей звездной величины, то есть в 250 раз более яркие, чем те, что являются пределом для их радиоколлег. (Эти расчеты, разумеется, не относятся к нашему БТА.)

Астрономы настойчиво пытаются обнаружить признаки того, что все галактики объединены в некую систему третьего порядка.

У нас проблемами Метагалактики занимается профессор Кирилл Федорович Огородников. Результаты его работ оказались чрезвычайно интересными. Сложные расчеты показали, что Метагалактика не только существует, но имеет свой центр, вокруг которого кружатся звездные архипелаги.

Из уравнений Огородникова следует, что существует некий центр гигантской системы. И одно из решений показало, что наша Галактика облетает это ядро Метагалактики, находящееся от нас примерно в полутора миллиардах световых лет, за 100 миллиардов лет. Это значительно больше, чем время существования Галактики. Так что наш мир еще находится в начале своего пути.

Исследования «системы третьего порядка» только начинаются. Астроном Вокулер, занятый той же проблемой, получил результаты, отличающиеся от выводов К. Ф. Огородникова. Но спора не получилось, потому что вслед за этим появились еще расчеты, не похожие ни на одни из предыдущих. Однако и ошибки — тоже результат. Важно, что проблема получила «права гражданства». Ею начали заниматься ученые. И контуры Метагалактики все-таки проступают. Пусть не так быстро, как нам этого хотелось бы, но пока на уровне «систем третьего порядка» предсказания Иоганна Ламберта как будто сбываются.

3. Мир в мастерских модельеров

Начало нашего столетия в астрономии — период яркий и драматический. Начался он со взрыва серии бомб колоссальной разрушительной силы на страницах мирного теоретического журнала «Анналы физики». Бомбами явились статьи Эйнштейна, посвященные новой физической теории.

Специальная и общая теории относительности заставили людей увидеть мир в новом свете. Эйнштейн выпустил из бутылки джинна. Его работы пробудили к жизни лавину научной деятельности, над которой сам Эйнштейн очень скоро потерял контроль.

В 1916 году, опубликовав основополагающую статью общей теории относительности, Эйнштейн ищет пути экспериментальной проверки своих выводов. Одним из следствий его теории было утверждение о незамкнутости планетных орбит, утверждение, явно покушавшееся на законы Кеплера. Однако астрономические наблюдения за Меркурием скоро подтвердили справедливость теории Эйнштейна. Из-за медленного изменения большой оси орбиты эллипс ее оказывался действительно незамкнутым.

Дальше путь лежал во вселенную. Не является ли общая теория относительности ключом к разгадке строения мира?

Рассматривая I закон Ньютона — «Всякое тело, на которое не действуют никакие силы, движется прямолинейно и равномерно», — Эйнштейн задумался: «Почему всякое и почему прямолинейно? А если бы мы жили в мире, подчиняющемся законам неэвклидовой геометрии, как бы выглядел закон Ньютона?..»

В любом пространстве роль прямых играют геодезические линии. Не значит ли это, что вокруг тяжелых тел искривляется само пространство, а мы, видя, как другие тела перемещаются в таком неэвклидовом пространстве по геодезическим линиям, воспринимаем это как искривление траектории под действием сил тяготения? Эйнштейн получил «мировые уравнения», связывающие воедино материю, пространство и время.

Так догадка физика, может быть даже против его воли, сомкнулась с кардинальным выводом материалистической философии, с которым выступил В. И. Ленин в 1909 году. Именно тогда вышла в свет работа Владимира Ильича «Материализм и эмпириокритицизм», изменившая наши взгляды на связь материи со временем и пространством. Мир стал един.

Однако решить в общем виде систему Эйнштейна, состоящую из десяти дифференциальных уравнений в частных производных, невозможно и сейчас. Сам Эйнштейн, чтобы получить все-таки хоть какой-то частный ответ, шел на упрощения. Так, в качестве основного постулата он выбрал аксиому о неизменности структуры вселенной во времени. Мир был и будет пребывать вечно во веки веков таким, каков он есть. Значит, и решения мировых уравнений не должны зависеть от времени.

Но желаемый результат никак не получался. В нуль упорно обращалась средняя плотность вещества вселенной, чего не могло быть. Тогда Эйнштейн ввел в уравнения поля тяготения произвольную космологическую постоянную, не дающую модели мира лишаться массы. И все как будто встало на места. Но сам автор был неудовлетворен.

Вообще это время было полно неожиданностей. Люди вдруг наталкивались на незначительные необъяснимые факты, которые через некоторое время грозили перевернуть, а то и переворачивали все привычные представления.

В 1912 году американский астроном Весто Мелвин Слайфер исследовал спектры нескольких туманностей, находящихся, по мнению астрономов, в пределах нашей Галактики. Неожиданно он обнаружил, что спектральные линии элементов, входящих в состав туманностей, сильно смещены к красному концу. Получалось, что они должны улетать от нас с большими скоростями. Но куда? И почему вдруг? Десять лет торговались теоретики, не соглашаясь ни с одним из предлагаемых решений.

В 1922 году в немецком «Физическом журнале» появилась крошечная заметка, не только обрушившая основы мироздания на головы теоретикам, но и подвергшая сомнению кардинальный вывод создателя теории относительности. Имя автора статьи — Александр Фридман — ничего не говорило миру. А то, что голос петроградского математика долетел до Европы из неустроенной послереволюционной России, вызывало любопытство.

Но главное содержалось в заметке. Этот Фридман все-таки решил мировые уравнения Эйнштейна, не ограничиваясь требованием неизменности вселенной и без смущающего всех «космологического члена».

Но при этом два решения Фридмана приводили к совершенно новым математическим моделям вселенной.

По первому решению получалось, что когда-то, в момент времени, который можно принять за нуль, все расстояния были во вселенной пренебрежимо малы. Существовало нечто, собранное в единый ком бесконечной плотности. И вот в момент, с которого начинается отсчет времени в нашей вселенной, произошел взрыв. Архивзрыв! Родились материя, пространство, время. Родилась вселенная. Взрыв бросил все ее части в разные стороны, придал им скорость и обрек на вечное «разлетание». Такова, грубо говоря, была динамическая модель «открытой вселенной» Фридмана.