Интенсивность движения и градус скорости как мера этой интенсивности являются понятиями, исходя из которых мертонцы и Орем строят свою модель движения. С помощью этих понятий они пытаются найти ключ к тем различиям, которые выявляются при рассмотрении движения как актуально происходящего процесса — к его быстроте и медленности, равномерности и неравномерности и т. п. Для них очевидно, что процесс движения нельзя выразить посредством «экстенсивных» величин (времени и пространства) — единственных, которыми пользуется Аристотель при объяснении движения. Концептуальный образ движения, на который они ориентируются (учитывая, конечно, что его контуры были намечены только в общих чертах в учении о широте форм), можно, пожалуй, сформулировать так: движение — это становящаяся последовательность inlensio velocitatis. В геометрии этой последовательности будет соответствовать не отрезок, а фигура, возникающая в ходе последовательного суммирования «скоростных перпендикуляров». Хотя перпендикуляры, как считалось, непрерывно покрывают всю площадь фигуры, однако для вычисления широты (latitudo velocitatis), т. е. приращения скорости (в случае равноускоренного движения), необходимо было выделить дискретную последовательность, в которой градусы скорости располагались бы на определенном расстоянии друг от друга. У мертонских кинематиков (и в этом легко убедиться, если проанализировать различные варианты доказательств теоремы о средней скорости, содержащейся в их работах) представление о дискретной последовательности градусов скорости, образуемой путем полагания, шаг за шагом, на фиксированном расстоянии отдельных градусов скорости, играет роль исходной интуиции, предопределяющей ход всех дальнейших рассуждений. Реальному физическому движению ставится в соответствие процесс образования последовательности, процесс счета, но в отличие от обычного процесса счета (временные) интервалы между считаемыми единицами в данном случае не являются произвольными. Экстенсивная величина (в частности, время) выполняла при порождении такой последовательности фактически функцию начала дискретности, средства разделения членов последовательности, и в качестве такового время было не «независимой переменной», а внутренним временем, одним из аспектов процесса счета. Еще раз подчеркнем, что все вышеизложенное — не пересказ положений, в явном виде сформулированных мертонцами, а скорее попытка восстановить те интеллектуальные интуиции, которыми они руководствовались в своем творчестве.
4.4. Определение униформного (равномерного) и униформно-дифформного (равноускоренного) движения — новый подход к проблеме непрерывности
Выявить рабочие, проявляющиеся в способах рассуждений и доказательств, регулятивы, не только отчетливо не формулируемые, но зачастую и не осознаваемые самими исследователями прошлых эпох, важно по двум причинам. Во-первых, для того чтобы яснее уловить различие в постановках и видении одних и тех же проблем, занимавших умы ученых в разные периоды истории науки. Во-вторых, с целью восстановить первоначальный взгляд на проблему, который, именно потому, что он первый, может, как и любое первое, свежее впечатление, содержать такие моменты, которые утрачиваются при дальнейшей логической разработке. Поэтому обращение к исходным интуициям, какими бы наивными они ни казались, может служить своеобразным дополнением к той работе, которая проводится по выяснению логических оснований науки на зрелом этапе ее развития — дополнением, способным внести коррективы в понимание структуры научного знания.
Если под этим углом зрения взглянуть на работы мертонцев, то, помимо отмеченной концептуализации времени как внутреннего времени «счета» (начала дискретности при построении последовательности), в них находит отражение и ряд других интуиции, столь же не-похожих на идеи, игравшие руководящую роль в кристаллизации собственно физических и математических аспектов учения о движении в новое время. В мертонцах видят (и вполне обоснованно) предшественников доктрины бесконечно малых. Излюбленный метод доказательств теорем, сформулированных ими относительно движения, включал в себя: 1) разбиение широты движения, т. е. величины, характеризующей положительное или отрицательное приращение скорости за определенный (конечный) отрезок времени, на части, получающиеся при (бесконечно продолжающемся) процессе дихотомического деления этой величины; 2) представление каждой части широты в виде бесконечного множества «моментов»; 3) установление соответствия между моментами, принадлежащими разным бесконечным множествам моментов. Наряду с идеей суммирования бесконечного множества моментов (или intensiones velocitatis), о чем уже шла речь выше, указанные способы доказательства, безусловно, относятся к инфинитезимальным методам. В них отчетливо просматривается и идея функциональной зависимости. Но вот что интересно: все эти интуиции представляют собой не просто несовершенное выражение математических понятий, точная формулировка которых была дана впоследствии, в них многие акценты расставлены иначе, чем в позднейших формулировках.
Например, понятие непрерывности, столь важное для анализа движения и в то же время с большим трудом операционализируемое (чтобы это понятие «заработало» в полную силу, понадобилось создать дифференциальное и интегральное исчисления), в работах мертонцев фактически используется в двух существенно различных смыслах. Один — традиционный, аристотелевский, согласно которому непрерывность является первичным, неопределяемым понятием науки. Будучи таковым, она противостоит другому неопределяемому понятию — дискретности. Непрерывное и дискретное в данном случае оказываются равноправными (в смысле — в равной степени неопределяемыми) интуициями, взаимно исключающими друг друга: нельзя об одном и том же предмете, рассматриваемом в одном и том же отношении, одновременно утверждать, что он и непрерывен и дискретен.
Другой смысл понятия непрерывности лучше всего пояснить на призере мертонских дефиниций различных видов движения: униформного (равномерного), униформно-дифформного (равноускоренного), дифформно-дифформного (неравноускоренного). В уже цитированном определении Хейтсбери равноускоренного движения говорится о равных приращениях скорости «за любую равную часть времени». В том же сочинении Хейтсбери содержится и определение равномерного движения: «Из локальных движений то называется равномерным, в котором равные расстояния (spatium) постоянно (continue) проходятся с равной скоростью (equali velocitate) в равные части времени» [103, 238]. В нем также присутствует идея разделения всего времени движения на равные части, хотя не уточняется, что рассмотрению подлежат любые равные части времени. Это столь же важное для определения равномерного движения, как и движения равноускоренного, слово «любой»[85] впервые было употреблено в определении равномерного движения Суайнсхедом: «равномерное локальное движение — то, в котором за любую равную часть времени описывается равное расстояние» [156, 245]. Наконец, дифформно-дифформное движение определяется как отсутствие униформности: оно не характеризуется ни равной скоростью, ни равными приращениями скорости, если сопоставляются части движения, выделяемые при любом разбиении времени, в течение которого оно происходит, на равные промежутки.
Разбиения такого рода являются главным компонентом всех трех определений. Каждое разбиение дает возможность представить время движения в виде последовательности (одинаковых) временных интервалов. В любом из указанных определений предполагается, что для ответа на вопрос, к какому типу относится то или иное движение, достаточно рассмотреть все дискретные последовательности временных интервалов, в соответствии с которыми оно может быть подразделено. Непрерывный характер движения оказывается как бы следствием совмещения всех дискретных последовательностей в одном ряду. Вместо бесконечного множества дискретных последовательностей в результате такого совмещения получается, если можно так выразиться, одна-единственная «непрерывная» последовательность.
Идеи мертонцев несли в себе зачатки нового подхода к определению понятия непрерывности. Не все из них, как представляется, реализовались в последующем развитии математики. Согласно утвердившимся в математике взглядам, «непрерывное» (характеризующее континуум) отношение порядка отличается от «дискретного» отсутствием одного из признаков последнего, гарантирующего существование единственного элемента, непосредственно следующего за данным (или предшествующего ему). Следуя по пути, намеченному мертонскими кинематиками, можно прийти не к негативному определению «непрерывного отношения» (а значит, и континуума в целом), превращающему непрерывное в недискретное, в противоположность дискретного, а к положительному определению его через дискретное, причем на совершенно других основаниях, чем это попытался сделать Кантор в своей теории множеств. Быть может, если бы в развитии математики реализовались возможности, заложенные в мертонских интуициях движения, не пришлось бы в настоящее время констатировать наличие «пропасти между областью дискретного и областью непрерывного» [65, 240], преодолеть которую математика пока оказалась не в состоянии.
85
Галилей, введя аналогичное определение, специально подчеркивал необходимость такого уточнения (см.: [21]).