Минимальная длина световой волны λmin составляет около 231 пикколомизера; такой свет движется с бесконечной скоростью и соответствует «ультрафиолетовому пределу». Максимально возможная временная частота света νmax примерно равно 49 генеросоциклам на одну паузу; это «инфракрасный предел», которому соответствует неподвижный свет.
Все оттенки света порождаются одной и той же структурой волновых фронтов, по-разному ориентированных в 4-пространстве.
На приведенной диаграмме AB обозначает расстояние между фронтами волны в 4‑пространстве; это расстояние постоянно и не зависит от цвета. AD — это длина световой волны (расстояние между фронтами в данный момент времени), а BE — ее период (интервал времени между фронтами в данной точке пространства).
Прямоугольные треугольники ACB и ABD подобны, поскольку углы при вершине A равны. Отсюда следует, что AC/AB = AB/AD, или:
AC = (AB)2/AD
Кроме того, прямоугольные треугольники ACB и EAB также подобны, так как имеют общий угол при вершине B. Следовательно, BC/AB = AB/BE, или
BC = (AB)2/BE
Применив к прямоугольному треугольнику ACB теорему Пифагора, имеем:
(AC)2 + (BC)2 = (AB)2
Подставим сюда два предыдущих выражения:
(AB)4/(AD)2 + (AB)4/(BE)2 = (AB)2
Поделив обе части уравнения на (AB)4, получаем:
1/(AD)2 + 1/(BE)2 = 1/(AB)2
Поскольку AD — это длина световой волны, то 1/AD — это ее пространственная частота κ, или количество волн, приходящихся на единицу длины. Поскольку BE — это период световой волны, то 1/BE — это временная частота ν, количество циклов, приходящихся на единицу времени. А поскольку AB — это фиксированное расстояние между волновыми фронтами, то 1/AB выражает максимальную частоту света νmax, то есть ту частоту, которую мы получаем в инфракрасном пределе, когда период волны равен AB.
Таким образом, мы доказали, что сумма квадратов пространственной и временной частот является постоянной величиной:
κ2 + ν2 = νmax2
При выводе мы опирались на предположение, что время и пространство выражаются в одних и тех же единицах. В приведенной выше таблице мы однако же используем традиционные единицы, которые существовали до открытия вращательной физики Ялды. Данные, собранные Ялдой на горе Бесподобная, показали, что если временной интервал отождествляется с расстоянием, пройденным голубым светом за соответствующее время, то соотношение между пространственной и временной частотами принимает простую форму, упомянутую выше. Таким образом, множитель, соответствующий переходу от традиционных единиц к «геометрическим», равен скорости голубого света ublue, и, следовательно,
(ublue × κ2) + ν2 = νmax2
Значения в таблице выражены в различных единицах измерения, которые были выбраны таким образом, чтобы все количественные показатели состояли из двух или трех цифр. Если мы добавим множитель для согласования единиц измерения, то соотношение примет вид:
(78/144 × κ2) + ν2 = νmax2
Теперь скорость света определенного оттенка можно выразить простым отношением расстояния, пройденного светом, к длине соответствующего интервала времени. Импульсы света на первой диаграмме проходят расстояние AC за время BC, поэтому u = AC/BC. Воспользовавшись выведенными соотношениями между AC, BC и пространственной частотой κ, а также BC, BE и временной частотой ν, мы получим:
u = κ/ν
С традиционными единицами измерения эту формулу опять-таки можно использовать только после добавления соответствующего переводного коэффициента:
u = (ublue × κ)/ν
После подстановки частот из приведенной выше таблицы, последнее выражение принимает вид:
u = (78/144 × κ)/ν
Скорость, о которой до сих пор шла речь, — это безразмерная величина, зависящая от наклона линии, описывающей историю светового импульса на пространственно-временной диаграмме. (На наших диаграммах временная ось вертикальна, а пространственная горизонтальна, поэтому скорость фактически обратна наклону). Домножив безразмерную скорость на 78, то есть скорость голубого света, выраженную в пропастях на паузу, мы получаем значения в традиционных единицах, приведенных в таблице.
О романе Грега Игана "Заводная ракета"
Orthogonal— модель мира с альтернативной теорией относительности.
В 2011–2013 гг. австралийский писатель Грег Иган (Greg Egan) опубликовал трилогию Orthogonal (The Clockwork Rocket, The Ethernal Flame, The Arrows of Time). В книгах описан удивительный мир, в котором нет жидкостей и электрических зарядов, обитают четырёхглазые разумные существа, способные менять форму и размножающиеся делением, использующие воздух не для химических реакций, а для охлаждения своего тела, а свет — для передачи нервных импульсов. Скорость света в этом мире непостоянна: фиолетовые фотоны движутся заметно быстрее красных. Поэтому звёзды выглядят не как белые точки, а как радужные полоски.
Ещё в первой книге герои выяснили, что причина такого поведения света заключается в свойствах пространства-времени их вселенной: в отличие от нашего мира, который является пространством Минковского, у них пространственная и временная координаты полностью равноправны. Любое тело движется по своей траектории в четырёхмерном пространстве-времени с постоянной скоростью, равномерное движение там выглядит, как прямая, а ускоренное — как дуга. Например, полёт космического корабля к другой звезде и обратно можно представить такой картинкой:
Тягу корабля во время разгона и торможения мы считаем постоянной, и в этом случае траектория его движения в пространстве-времени будет дугой окружности. За конечное время корабль достигнет бесконечной (по часам неподвижного наблюдателя) скорости, и основная часть полёта пройдёт за нулевое время. При этом время для пассажиров корабля будет идти как обычно, и измерить его можно по длине траектории на рисунке. Когда корабль вернётся в точку старта, окажется, что на родной планете прошло всего несколько лет, в то время, как для пассажиров корабля могли пройти века. Более того, если фазы разгона/торможения будут длиться чуть дольше, то корабль может вернуться в тот же момент, когда он стартовал, а может даже раньше:
Правда, Вселенной придётся как-то решать возникающие при этом парадоксы, и эти решения могут оказаться неожиданными для обитателей планеты.
Здесь красная линия — траектория красного фотона, а фиолетовая — соответственно, траектория фиолетового. Глаз видит фотоны, траектории которых находятся между этими линиями.
Герои книги видят свет в диапазоне скорости от 76/144 до 192/144 от скорости синего света (синие фотоны — это те, которые летят в пространстве-времени под углом 45 градусов к наблюдателю, то есть, их видимая скорость в пространстве равна скорости любой системы отсчёта в пространстве-времени). Таким образом, наблюдатель видит только те фотоны, траектория которых лежит между двумя конусами:
Половина угла при вершине внутреннего (красного) конуса составляет 27 градусов, а внешнего (фиолетового) — 54 градуса. Если траектория звезды пересекает это пространство, то звезду видно:
Здесь рассматривалась медленно движущаяся звезда. Если скорость звезды станет больше, то траектория будет состоять из двух частей: