Она и многие другие нейрофизиологи изучают связь нейрогенеза и процессов обучения. Исследуется также и связь с физической активностью. Однако интересно, что относительно мало ученых интересуются самой двигательной активностью. Скорее, они заставляют мышей бегать потому, что этот бег «приводит к массивному нейрогенезу», как провозглашало солидное исследование под названием «Гиппокамп» (2006). Ученые стремятся дешифровать цепочку сигналов, сопутствующих нейрогенезу. Это нужно фармацевтическим компаниям для производства новых лекарств. Они мечтают о создании препарата «Анти-Альцгеймер», которые регенерировал бы нейроны для сохранения памяти. Нейробиолог из Колумбийского университета Скотт Смол, который использовал новейшие образцы компьютерного томографа для наблюдения за нейрогенезом у людей, говорит: «В гиппокампе должно находиться какое-то нейрохимическое вещество, которое реагирует на двигательную активность и отдает команду на формирование новых нервных клеток – нейронов. Если мы сможем открыть природу этих молекулярных процессов, то сумеем изобрести какие-то мудрые способы биохимического запуска нейрогенеза».
Только представьте, что произойдет, если ученые смогут поместить физическую активность в бутылочку!
Связь тело – мозг
Если в мозге растут новые клетки, нужно и какое-то «удобрение» для них. С самого начала ученые полагали, что эту функцию должны выполнять нейротрофины. Исследователи давно узнали, что без белков BDNF, этих «помощников роста Miracle-Gro», мозг не в состоянии воспринимать новую информацию. Теперь они поняли, что без нейротрофинов новые нейроны вообще не могут образовываться.
Белок BDNF концентрируется в особых резервуарах поблизости от синапсов и выбрасывается в нейронную инфраструктуру при активизации жизненных процессов. В этом также принимают участие некоторые гормоны. Среди них IGF-1 – инсулиноподобный фактор роста (ИФР), VEGF – фактор роста эндотелия сосудов (ФРЭС) и FGF-2 – фактор роста фибробластов (ФРФ). Во время физической активности эти гормоны активно поступают в организм через разветвленную систему капилляров, которые предотвращают попадание в кровь объемных чужеродных тел, таких как бактерии. Только недавно ученые узнали, что при поступлении в мозг эти гормоны взаимодействуют с нейротрофинами, запуская молекулярный процесс обучения. Они также генерируются в самом мозге и способствуют делению в нем стволовых клеток, особенно во время нагрузок. Очень важно, что эти гормоны обеспечивают прямую связь между нашим телом и мозгом.
Возьмем, например, инсулиноподобный фактор роста, который образуется в мышцах, когда они испытывают недостаток питательных веществ при упражнениях. Глюкоза – это главный источник энергии для мышц и единственный – для мозга. ИФР работает вместе с инсулином для обеспечения клеток энергией. Интересно, что он связан еще и с обучением. Возможно, в доисторические времена его действие как-то помогало людям находить пищу. Во время физических упражнений нейротрофины помогают мозгу увеличивать производство инсулиноподобного фактора, а он активизирует нейроны для выработки ими сигнальных нейромедиаторов – серотонина и глутамата. Он также способствует возникновению в нейронах большего числа рецепторов нейротрофинов, что усиливает нейронные связи и консолидирует нашу память. Судя по всему, нейротрофины особенно важны для формирования долговременной памяти.
Этот механизм очень разумен с точки зрения эволюции. Абстрагируясь от научных терминов, скажем: главная причина, по которой нашим предкам необходима была способность к обучению, заключалась в приобретении навыка поиска и добычи пищи, а также ее сохранения. Мы нуждаемся в энергетических ресурсах, чтобы учиться; нам требуется способность к обучению, чтобы находить источники энергии. Все сигналы, исходящие от тела, поддерживают эти процессы, позволяют приспосабливаться к окружающим условиям и выживать.