Выбрать главу

Все большее место в изучении физиологии здорового и больного мозга занимает метод вызванных потенциалов (ВП), особенно при одновременной записи ЭЭГ. Долгое время метод ВП был одним из признанных приемов изучения функциональной анатомии мозга, способом регистрации вызванных ответов на адекватный сигнал, подаваемый через сенсорные входы или электрическое раздражение периферических или центральных нервных структур. Значение метода в этом плане осталось тем же, но сфера его применения все расширяется. Так, метод ВП, зарегистрированных вместе с ЭЭГ, представил в клинике, в частности при эпилепсии, данные той степени надежности, на основе которых оказывалось возможным достаточно характеризовать состояние больных, функциональное состояние эпилептизированного мозга. Регистрация и анализ ВП и ЭЭГ одновременно с многих отведений поверхности кожи черепа предлагаются в качестве основного метода для предварительной компьютерной статистической диагностики поражений мозга (John, 1977). Не исключено, что это методическое сочетание окажется полезным при многих патологических состояниях.

Накапливается все больше сведений (Королькова и др., 1981; Альтман, 1984; Жирмунская, Анохина, 1984) о возможности соотносить характеристики вызванного потенциала с эмоциональной реакцией и достаточно сложным, семантически значимым входным сигналом. Развитие исследований неизбежно отсеет увлечения в этом вопросе, однако полученные данные свидетельствуют о большой информативности метода для изучения физиологических возможностей здорового мозга и позволяют получать материалы к оценке нарушений переработки информации при развитии заболевания. Так, в частности, с помощью метода ВП объективно подтверждено, что неблагоприятное течение эпилепсии характеризуется нарушением и тех механизмов мозга, которые связаны с восприятием и переработкой информации.

В методическом руководстве (под редакцией В. Б. Гречина, 1977) рассмотрены результаты и возможности использования практически всех физиологических методов, применяемых при изучении физиологии здорового и больного мозга. В данном случае, когда рассматриваются не методики, а принципиальные возможности, открывающиеся в физиологии здорового и больного мозга человека при их использовании, соответствующие аспекты подробно освещены лишь в отношении тех методов, традиционных или нетрадиционных, где более или менее существенно пересмотрены их возможности и прежде всего в сторону расширения.

Регистрация неэлектрического показателя – напряжения кислорода – сейчас все шире используется по прямому назначению для оценки напряжения кислорода в ткани мозга (Cooper et al., 1966; Гречин, 1972; Шахнович и др., 1974; Гречин, Боровикова, 1982). Этот метод дает ориентировочные данные относительно близости внутримозгового электрода в сером или белом веществе. Колебания напряжения кислорода неодинаковы в различных структурах, и поэтому характеристики спектра этих колебаний могут быть использованы как дополнительные данные при уточнении расположения электрода. Так же как и медленные колебания, этот показатель можно использовать при соответствующих пробах для изучения структурно-функциональной организации мозга, для выявления звеньев мозговой системы обеспечения той или иной деятельности. Так, регистрируя напряжение кислорода при интеллектуально-мнестических пробах, удалось выявить изменения в состоянии отдельных мозговых структур, а затем все большего их числа при пробах на краткосрочную и долгосрочную память.

Если данные о структурно-функциональном обеспечении краткосрочной памяти представили материал о вовлечении первоначально достаточно большого числа мозговых зон в упомянутый процесс, то путем удлинения сроков между предъявлением пробы и ее воспроизведением удалось обнаружить реорганизацию системы, участвующей в обеспечении этой деятельности, и прежде всего – в сторону уменьшения числа ее звеньев. В этих исследованиях вновь выявилась необходимость повысить информативность применяемого метода, использовать методический комплекс. Сочетанное измерение напряжения кислорода в тканях и скорости кровотока позволило более точно судить о близости электрода к артериальному сосуду и способствовало пониманию физиологической сущности направления колебаний напряжения кислорода в тканях. С этой же целью проводилось и исследование импеданса в тканях мозга (Гречин, 1975; Гречин, Боровикова, 1982). Можно надеяться, что в таком расширенном варианте данный методический комплекс позволит глубже проникнуть в физиологические аспекты долгосрочной памяти (Adey, 1977; Михальцев, 1978). Для расшифровки физиологической сущности фаз колебаний напряжения кислорода в тканях применяется одновременная регистрация этого показателя и мультиклеточной импульсной активности (Бундзен и др., 1975а, 1975б). При этом оказывается возможным получить одновременно материалы и о физиологических свойствах различных нейронов, и о механизмах памяти. В этом плане нуждаются в дальнейшем подтверждении и расшифровке материалы об участии в процессах памяти по крайней мере двух типов нейронов, играющих разную физиологическую роль и работающих соотносимо с разными фазами колебаний напряжения кислорода. Ю. Д. Кропотов (1979а) описывает нейроны, активность которых учащается на восходящей и на нисходящей фазах волн напряжения кислорода.