Выбрать главу

Общая длительность перемен за четыре года обучения равняется примерно 39 100 минутам. С этими минутами шутить нельзя, так как, если сложить их вместе, они составят около 160 обычных школьных дней.

Раздается звонок, мелодичный, электрический.

— Дети, заходите, пожалуйста, в класс! Мальчики, помните, что вы — мужчины!

«Кто же из нас прав?»

Все дети, наверное, умеют считать до десяти, может быть, и до двадцати и даже до ста. Это я уже по опыту знаю. Нет смысла проверять, как каждый из них станет говорить мне скороговорку, состоящую из «раз-два-три-четыре-пять» и т. д., произнесенную залпом, без запинки.

Нет смысла делать это сегодня, потому что дети пока никакого понятия не имеют о числе. Лучше начать с непривычных для них заданий, приводящих в движение уже накопленный ими опыт и придающих содержательный смысл этим скороговоркам «раз-два-три-четыре-пять…».

Но сначала надо выяснить, сколько фишек-слов было собрано в нашей коробке на уроке родного языка. Илико несет коробку, за ним идут Тенго и Майя.

— Их очень много! — говорит Майя.

— Больше ста! — поясняет Тенго.

Видите, сколько мы сегодня собрали слов! Завтра мы должны собрать еще больше! — говорю я, обращаясь к классу. — А вам большое спасибо, что помогли сосчитать фишки-слова!

— А зачем Вам нужно так много слов? — спрашивает Нато. Мне нужно?!

Я объясню это в следующий раз! — говорю я Нато. — А теперь приступим к уроку математики.

На первом уроке математики детям обычно разъясняют, что они начинают учиться считать, складывать и вычитать, делить и умножать. Предполагается, что это доступное для них объяснение предмета математики. Детям действительно понятно, когда им говорят: мы будем изучать, как отнять от пяти яблок три яблока, чтобы узнать, сколько останется; или же как прибавить к трем орешкам шесть орешков, как разделить десять груш на двоих и т. д. Но ведь не сложение и вычитание, не умножение и деление есть су!ъ предмета математики!

Пусть я допускаю методическую оплошность, но я поступлю вот так.

— Дети, вы знаете, что такое наука математика?

Тамрико. Это когда считаешь до ста… Елена. Надо считать до ста и еще уметь слагать… Я умею… К пяти прибавить пять будет десять…

Вахтанг. Я тоже умею складывать и вычитать… Папа учил…

Я подхожу к доске и приоткрываю занавеску. На ней цветными мелками написаны: формула Ньютона, формула производной функции, нарисована координатная система Декарта с функцией.

Формула Ньютона, формула производной функции, координатная система Декарта с функцией

Саша. Что это такое? Какие удивительные буквы! У детей широко раскрыты глаза, многие приподнялись с мест, чтобы разглядеть формулы получше.

— Это — настоящая математика, наука о количественных соотношениях и пространственных формах!

— Как красиво! — восклицает Лела, не отрывая глаз от доски.

— Потому что сама математика красивая. Ученые говорят — она царица наук.

Недоступно будет детям такое истолкование математики? Разумеется, мои дети не поняли много из того, что было сказано и показано мною. Но зато как было внушительно!

— Нравится вам математика?

— Да! — раздается восхищенно и единогласно.

Эка. Вы научите нас этому? (Указывает на формулы.)

— Я подготовлю вас к тому, чтобы вы научились понимать такие формулы. Хотите?

Опять восхищение и единогласное: «Да!»

— Так займемся этим делом!.. Садитесь прямо!.. Вот так!.. Посмотрите на эти фигуры и запомните их последовательность.

Я кладу у доски квадратики, на которых нарисованы фигуры:

Квадратики с фигурами

— Запомнили?.. Опустите головы!.. Закройте глаза… Поднимите головы… Скажите, что изменилось в последовательности фигур?

А последовательность теперь такая:

Квадратики с фигурами

Гига бежит к доске и кричит:

— Вы там переставили… вот это было здесь (показывает на точку), а буква А была здесь! — и он возвращает их на прежнее место.

— Запомните еще раз последовательность расположения фигур… Опустите головы и закройте глаза!.. Будете шептать мне на ухо, какие фигуры я переставил… Поднимите головы и посмотрите!