Практика лабораторной работы по синтезу более сложных соединений из более простых при помощи соответствующих энергетических воздействий добилась больших успехов. Обычно для этого применяются высокие давления, поскольку при синтезе объем получаемого вещества меньше, чем сумма объемов исходных веществ.
Опираясь на идеи А. И. Опарина и Г. Юри о первичном составе атмосферы Земли из метана, аммиака, воды и водорода, профессор Колумбийского университета Стэнли Г. Миллер в 1955 г. провел очень интересный опыт синтеза органических соединений в искровом электрическом разряде. Он подводил к смеси метана, аммиака и водорода нагретые пары воды под давлением в пределах 100-200 мм рт. ст. Эта смесь подвергалась действию искровых разрядов с максимумом напряжения в 60 тыс. вольт. Было обнаружено что, кроме исходных газов, в приборе присутствует целый ряд новых углеродных соединений. Получившаяся сложная смесь соединений была разделена различными методами.
Результаты этого замечательного опыта подтвердили возможность природного образования сложных органических соединений из немногих простых компонентов, составляющих первичную атмосферу Земли С. Миллер получил глицин, аланин, аспарагиновую, глютаминовую кислоты и другие соединения, которые входят в состав белков или участвуют в биохимических процессах обмена веществ организмов. Многие из этих веществ могут быть единственными источниками углерода и энергии организмов. Таким образом, опыт С. Миллера показал, что органические соединения можно получить из простых неорганических соединений.
Аминокислоты и полипептиды еще далеки от живого организма. Нужно найти механизмы синтеза еще более сложных органических соединений - пуринов, пиримидинов, жиров, коферментов и нуклеиновых кислот, в особенности ферментов - полипептидов, способных содействовать обмену веществ. С. Миллер отмечает, что роль катализаторов в реакциях, происходящих в организмах, могут играть и некоторые металлы и простые органические соединения, но вряд ли их деятельность могла быть достаточной для обеспечения жизнедеятельности. Поэтому он приходит к заключению, что именно полипептиды были катализаторами почти с самого начала возникновения обмена веществ, еще до того, как развился воспроизводящий себя организм. Таким образом, чтобы существующая гипотеза о происхождении организмов стала вполне доказанной научной теорией, экспериментальному направлению химии и биологии предстоит еще получить искусственно эти полипептиды.
С. Миллер считает возможным два пути образования первичных живых организмов. Первый из них - это появление, согласно представлениям А. И. Опарина, коацерватов - разнороднейших по структуре и свойствам первичных сгустков белковых веществ. Попадая в виде микрокапель в сферы развития геохимических реакций с выделением тепла, эти' сгустки на момент или на более длительные сроки "оживали", становясь сами средой таких реакций. Продолжительность "жизни" соответствующих систем зависела от того, насколько успешно налаживалась их связь со средой, их породившей. Например, закисное соединение, проникнув внутрь коацервата путем осмоса через его граничный слой, превращалось в окись с выделением некоторого количества энергии. Поскольку закись исчезает, то сюда из среды путем осмоса поступает новая ее порция, чем поддерживается процесс и, следовательно, жизнь. Коацерваты могли накапливать еще больше белков и, таким образом, в течение длительного времени вырабатывать механизм для синтеза белка и для генетического размножения, что составляет признаки организма.
Вторую возможность развития органического вещества С. Миллер видит в возникновении так называемой дезоксирибонуклеиновой кислоты - сокращенно ДНК, свойственной веществу современных организмов. Молекулы этой кислоты могли содержать "биологическую информацию", образовывать мутации (скачкообразные изменения), в результате чего метаболические (созидательные) способности первичных форм жизни могли увеличиваться, мог расшириться обмен их веществ со средой. Полезные изменения - это уже признаки живого организма. Естественный отбор должен был обеспечить дальнейший ход эволюции организмов.