Выбрать главу

Глаз человека склонен все дальше дробить увиденные узоры, особенно если они контрастны по цвету, как, к примеру, шахматная доска. Начнем с «шахматной доски», состоящей всего из двух рядов по две клетки. (Вместо шахматной доски можно взять четыре квадратные кафельные плитки пола или стены.)

Как можно разделить пополам узор, состоящий из 2X2 плиток? Ответить на этот вопрос, разумеется, не трудно. Только одной чертой, проходящей посередине либо слева направо, либо сверху вниз и отделяющей две клетки (слева или сверху).

Квадрат, составленный из 4Х4 клеток, можно разделить пополам шестью способами

Доску, состоящую из 3Х3 клеток, разделить пополам (не перекая клетки) невозможно. В некоторых играх, правда, используются игровые поля 3Х3, 5Х5 и т. д., исключающие середину я чтобы при делении игрового поля пополам получилось целое число клеток. Но мы здесь не будем рассматривать такие уже и от тех, что складываются из целого числа клеток, голова может пойти кругом.

Сколько существует возможностей разделить пополам узор, составленный из 4 х 4 клеток, не пересекая их? При этом мы пренебрежем различием верх - низ и левое - правое. (Такие решения можно перевести друг в друга простым поворотом.) Тот, кто как следует повозится с таким делением, найдет, худо - бедно, 6 способов.

А если попробовать разделить поле 6x6 клеток? Английский мастер головоломок Генри Э. Дьюдени нашел 255 способов деления такого поля. Для шахматной доски с 64 клетками (8Х8) компьютер рассчитал 92 263 варианта деления!

Существует множество аналогичных задач, над которыми бьются шахматисты и математики. Излюбленными остаются задачи такого рода: сколько ферзей (или слонов, или ладей) можно выставить на одну доску, чтобы они не угрожали друг другу? (Для тех, кто не играет в шахматы, следует заметить, что ферзь имеет право ходить во все стороны, включая и диагонали, сколь угодно далеко.) Любители шахмат определили, что на доске могут находиться 8 ферзей.

Тут встает следующий вопрос: сколько существует вариантов их расстановки? В 1850 г. Франц Наук опубликовал в лейпцигской «Иллюстрированной газете» ответ: таких основных позиций 12.

Поскольку мы много говорили о зеркальных плоскостях, надо надеяться, вы, не задумываясь, проведете плоскость симметрии через шахматную доску сверху вниз. Это будет первым решением.

Следующую плоскость зеркального отражения вы можете провести слева направо, еще две плоскости пройдут по диагонали. Таким образом, мы нашли еще четыре решения. Теперь повернем поле на 180° и снова проведем две диагональные плоскости зеркального отражения и одну - сверху вниз. Но вот провести плоскость симметрии слева направо мы больше не сможем: она даст нам только ту же картину, которую мы уже видели.

Таким образом, путем простого зеркального отражения и вращения мы добавили к основной позиции фигур еще семь вариантов. За одним-единственным исключением, эта операция возможна и для всех остальных основных положений, которые нашел Наук. В упомянутом исключительном случае существует только три отражения. Всего ферзи могут быть одновременно расставлены на шахматной доске, не угрожая друг другу, в 92 различных позициях.

Этот пример учит нас тому, как можно извлечь пользу из наличия симметрии. Разумеется, сначала необходимо было установить, что на иоле могут находиться только 8 ферзей. Потом нужно было выработать 12 основных исходных позиций, что, конечно, было нелегко. Но остальные 80 вариантов можно было найти, отнюдь не будучи специалистом в шахматах. Достаточно было знать, как действует зеркало. С другой стороны, следует признать, что наверняка существует немало выдающихся шахматистов, которые никогда не слыхали о плоскостях симметрии.

К ВОПРОСУ ОБ ОПРЕДЕЛЕНИЯХ

Говорят, что всякую проблему можно рассматривать с трех точек зрения: с моей, с твоей и с точки зрения фактов.

Несомненно, что-то в этом афоризме есть. Стакан может быть полупустым или наполовину полным. В кармане может быть целых 5 рублей или всего лишь 5 рублей! Пассажиры переживают сильный шторм, а видавший виды капитан в то же время ощущает лишь свежий бриз.

Определим, что такое шахматная доска. Можно сказать, что это 64 клетки, расположенные в 8 продольных рядов по 8 клеток в каждом, так что в целом все вместе они образуют квадрат. Но можно выразиться иначе: это квадрат, разделенный на 64 равные квадратные клетки. (В обоих случаях надо бы еще сказать о черных и белых полях, но, поскольку для наших целей это обстоятельство несущественно, опустим эту часть определения.) В первом случае мы образуем большой квадрат из маленьких, во втором - делим большой на маленькие.