Выбрать главу

После того, что мы узнали о Лейбнице и его работах в области логики, нам нужно уточнить соотношение между «аналитическим» и «механическим» путями развития логики. Ведь остается не ясным, к какому из этих направлений склонялся Лейбниц, занимавшийся и проблемами логической символики, и задачей автоматизации рассуждения.

К соотношению этих двух компонентов одной и той же области исследования нам придется возвращаться еще не раз, поскольку, чем более ясной будет становиться для нас общая картина формирования современных логики и кибернетики, тем лучше и полнее мы будем понимать и указанное соотношение. Но уже теперь мы видим, что оба направления тесно связаны друг с другом. В самом деле, механизация рассуждения при использовании в качестве исходных элементов крупных единиц языка — например, основных положений какой-либо науки — не очень интересна: она дает мало преимуществ по сравнению с выведением следствий «в уме», так как приводит к небольшому числу тривиальных или легко определяемых утверждений. В лучшем случае она обеспечивает лишь определенную стимуляцию размышления — примерно такого типа, как стимуляция, создаваемая приборами Луллия. Гораздо перспективнее вовлечь в автоматизированный процесс переработки значительно более мелкие единицы языка — высказывания или составные части высказываний, подразделить их на типы, изучить свойства каждого типа и сформулировать правила переработки составных выражений, зависящие от типов и порядка расположения в них элементарных частей.

Дело в том, что люди, даже при самых простых рассуждениях (неважно, делаются они в уме или «проговариваются»), оперируют целыми вереницами высказываний, большинство из которых имеет сложный характер, создают разветвленные цепи и замкнутые циклы аргументации, не боятся повторений, обрывают тупиковые ветви аргументации, приводят рассуждение к абсурду или очевидности, после чего быстро «проигрывают» всю эту логическую симфонию в обратном порядке и оставляют в сознании правильные заключения, бракуя неправильные. Чтобы такую работу, хотя бы приблизительно, производила машина, нужно вложить в нее огромное количество мелких логических и языковых элементов, сообщить ей много правил и сложных процедур оперирования.

Поскольку машина может реагировать лишь на знаки (мы не имеем здесь в виду сложной проблемы распознавания зрительных образов машиной; знаки могут быть очень простыми — например, представлять собой набор штифтов, вставляемых в соответствующие отверстия), содержание слов и фраз ей недоступно. Поэтому для устройства сносно работающей логической машины необходима как минимум детально разработанная логическая символика, так сказать, «логический синтаксис», заключающийся в своде правил относительно того, какие сочетания символов могут встречаться вместе (и в каких комбинациях) и какие запрещены, а также «логическая грамматика» — свод правил, по которым одни комбинации (разрешенные) символов перерабатываются в другие комбинации.

Лейбниц, конечно, понимал это, хотя, наверняка, не представлял себе, сколь сложной является задача отвлечения от всего того, что стоит за рассуждениями людей, от философских или богословских постулатов, от внешней реальности, отражаемой в языке, как трудно позабыть обо всем этом, «разъять как труп» формальные логические структуры, с тем чтобы позже, детально изучив их различные допустимые виды, снова собрать воедино в сложном синтезе, в огромном искусственном механизме, способном в специфической форме воспроизводить и усиливать то, что делает человек с помощью мышления и естественного языка. Избежать этой кропотливой черновой работы было нельзя. Но ее начали делать по-настоящему лишь в XIX веке Джордж Буль и другие математики и логики, о которых речь пойдет в следующей главе. И в том же XIX веке была продолжена «механическая» линия развития логики, идущая от Луллия и Лейбница.

Мы познакомимся с одной из логических машин прошлого столетия — с машиной Джевонса. Она была основана на более детально разработанной формализованной логике, чем логические исчисления, которые строил Лейбниц. Это и не удивительно: Джевонс не только хорошо знал труды основоположника математической логики Буля (которые оценивал как «эпоху в человеческом мышлении») и другого известного математика того времени — Августа Де Моргана (1806—1871), но и сам разработал оригинальную систему алгебраического логического исчисления. Последнее и было положено в основу действия его машины.

Уильям Стенли Джевонс (1835—1882), профессор логики и политической экономии в Манчестере, а затем в Лондоне, построил свою машину в 1869 году. Ныне она хранится в Музее истории наук в Оксфорде. Ее демонстрация в свое время вызвала, по-видимому, большой интерес и явилась некоторого рода сенсацией; но она не производила, вероятно, того мистического впечатления, как когда-то прибор Луллия. Времена изменились, и хотя многие люди и в наши дни легко могут поверить в «летающие тарелки», все же престиж научного знания вырос существенно. Поэтому на устройство Джевонса смотрели как на Доказательство торжества точных наук и математики, а не как на таинственный «указатель истины».

Машина Джевонса вызвала интерес и в нашей стране: в конце XIX века у нас была опубликована статья с описанием машины[12], а в последствии она была воспроизведена в России с некоторыми усовершенствованиями и публично демонстрировалась. Приведем объявление, помещенное в газете «Русские ведомости» от 16 апреля 1914 года:

«Мыслительная машина. В субботу, 19 апреля в большой аудитории Политехнического музея состоится публичная лекция проф. А. Н. Щукарева на тему «Познание и мышление». Во время лекции будет демонстрирована мыслительная машина, аппарат, который позволяет воспроизвести механически процесс человеческой мысли, то есть выводить заключения из поставленных посылок. Машина построена впервые математиком Джевонсом и усовершенствована автором лекции. Результаты ее операций получаются на экране в словесной форме»[13].

Чтобы пояснить, какого рода логические рассуждения можно было «передать» машине Джевонса, расскажем о его логическом исчислении. Это исчисление было модификацией алгебры логики Дж. Буля, о вкладе которого в интересующую нас область речь пойдет в следующей главе.

Исчисление Джевонса представляло собой некоторую логику равенств, так как каждое высказывание записывалось в нем в виде равенства, то есть выражения вида А = В, где А и В могли быть сложными логическими выражениями. Преобразование равенств производилось по правилу замены равным, известному из школьной алгебры, так как на нем основаны тождественные преобразования алгебраических выражений.

Правило это (его Джевонс называл «принципом замещения») гласит: если верно, что А = В, и об А нечто утверждается (то есть A входит в состав какого-то сложного утверждения, признаваемого верным), то тоже самое должно утверждаться и о В. Как, разъясняет Джевонс, «то, что верно об одной вещи, будет верно и относительно другой, равнозначащей с первой»[14].

Логика Джевонса была логикой классов; суждения в ней записывались как равенства и истолковывались как высказывания о классах (множествах) предметов. Смысл равенств был следующим:

(1) А = В — простое тождество: множества A и B совпадают. Например, «Равносторонние треугольники = равноугольные треугольники», то есть «Все равносторонние треугольники равноугольны».

(2) A = АВ — частичное тождество: класс A совпадает с пересечением классов А и В[15].

Например, «Млекопитающие = млекопитающие позвоночные», чему в обычной речи соответствует «Все млекопитающие суть позвоночные».

(3) АВ = АС — ограниченное тождество: тождество B и C ограничено сферой вещей, которые суть A. Например, «Материальное вещество = материальное тяготеющее вещество».

вернуться

28

12. И.Слешинский. Логическая машина.— «Вестник опытной физики и элементарной математики». Одесса, 1893, № 175 (7).

вернуться

29

13. Цитируется по статье: А. И. Берг. Кибернетика и общественные науки.— В кн.: Методологические проблемы науки. Материалы заседания Президиума Академии наук СССР. М., 1964, с. 260. О машине Джевонса в России, усовершенствованной известными физико-химиками П. Д. Хрущевым и А. Н. Щукаревым, см.: В. А. Велигжанин, Г.Н. Поваров. К истории создания логических машин в России.-«Вопросы философии», 1971, № 3.

вернуться

30

14. Ст. Джевонс. Основы науки. Трактат о логике и научном методе. Спб, 1881, с. 2. В этой книге читатель найдет подробное и очень доступное изложение алгебры логики Джевонса — теории, в которой впервые в логике фактически присутствовало то, что ныне называется булевой алгеброй (см. следующую главу). В нашем изложении мы несколько изменили символику Джевонса, приблизив ее к современной. Примеры, которыми мы оперируем, принадлежат Джевонсу.

вернуться

31

15. Операция пересечения двух произвольных классов (множеств) — это операция, порождающая такой класс — его обычно обозначают А ∩ В или просто AВ, как в нашей записи, который состоит из элементов, входящих как в класс A, так и в класс В. В дальнейшем будут использоваться также понятия объединения двух классов и дополнения к классу. Операцией объединения произвольных классов A и В называется операция, порождающая такой класс (он обозначается через A ∪ В), который состоит из элементов, входящих хотя бы в один из классов: в A или в В.

Операция взятия дополнения к произвольному классу A (до некоторого объемлющего универсального класса, или универсума, V) есть операция, порождающая класс, состоящий из всех тех и только тех) элементов универсума, которые не входят в класс А; дополнение к А обозначается через A' или -A. Заметим, что операции пересечения и объединения классов обладают свойством коммутативности (перестановочности, симметричности), то есть А ∩ В = В ∪ А, А ∪ В = В ∩ А (это свойство используется ниже в примере 3).