Выбрать главу

Проиллюстрируем возникающую здесь ситуацию на примере. Как, скажем, может производиться разбиений области рациональных чисел, дающее сечение для числа е. Заметим предварительно, что при вычислении этого числа с наперед заданной точностью пользуются его представлением в виде ряда

1 + 1/1! + 1/2! + 1/3! ...

Предположим что задано рациональное число R1 = 2,7182 и нужно отнести его к левому или правому классу. Для этого мы должны будем вычислить е с точностью, дающей не менее пяти знаков после запятой, что означает взятие в приведенном ряде девяти слагаемых. Суммирование их дает число 2,71828. Сравнивая R1 с этим числом, мы приходим к заключению, что R1 принадлежит к левому классу, поскольку к этому классу принадлежит любое конечное приближений числа е, найденное с помощью приведенного выше ряда (оно всегда меньше e, так как при прибавлении новых членов ряда мы только увеличиваем сумму). Легко сообразить, что если проверяемые числа будут достаточно "длинными"), фактическое осуществление подобной проверки станет невозможным не только для человека, но и для ЭВМ. Но это еще не все. Данный пример показывает, что для «фактического» осуществления разбиения, то есть «точного» выяснения вопроса, что же представляет собой сечение для е, нужно «пробежаться по бесконечности» — произвести неограниченно большое число процедур получения все возрастающих сумм указанного ряда.

Пункт, второй. Если мы и построим сечения для каких-то иррациональных чисел, давая для них правила отнесения к соответствующему (левому или правому) классу любого рационального числа, то эти сечения далеко не исчерпают всех иррациональных чисел. По существу, сечения можно дать только для ничтожной доли всех действительных чисел. Но тогда спрашивается: откуда же в нас возникает убеждение, что действительных чисел неизмеримо больше, чем осуществленных сечений? Если разобраться в этом, мы придем к выводу, что оно появляется как результат специфического акта воображения: перед нашим внутренним взором пробегают, вереницы бесконечных десятичных дробей Вейерштрасса, с каждой из которых связано некое сечение.

Эти уязвимые для критики пункты подрывают теорию сечений — мы убеждаемся, что с нею, как и без нее, от бесконечностей никуда не уйдешь. Но она представляла собой важное методологическое достижение, учитывающее новые элементы научного видения математиков. Философской основой этого видения был так называемый математический платонизм.

В своей знаменитой «теории идей» Платон утверждал, что чувственно воспринимаемые объекты есть лишь бледные копии идей («эйдосов»), существующих в неком идеальном мире. Эйдосы существуют там более реально, чем существуют в материальном мире обычные вещи, поскольку Зычные вещи со временем разрушаются и исчезают, а идеи вечны и поскольку вещи имеют дефекты и изъяны, а идеи совершенны. Исходя из этого основного положения, Платон обсуждал свойства идей и их отношение к вещам, пользуясь для этого формальной логикой естественного языка.

Было бы абсурдно утверждать, что математики XIX века сплошь увлекались Платоном. На деле у них были самые различные философские взгляды, но в своем отношении к математическим объектам почти все они стояла на точке зрения стихийного платонизма.

Уклон в сторону платонизма создавала сама тогдашняя математика. Об этом хорошо сказал Бертран Рассеяв «Я полагаю, что математика является главным источников веры в вечную и точную истину, а также сверхчувственный интеллигибельный мир. Геометрия имеет дело с точными окружностями, но ни один чувственный объект не является точно круглым; и как бы мы тщательно ни применяли наш циркуль, окружности всегда будут до некоторой степени несовершенными и неправильными. Это наталкивает на предположение, что всякое точное размышление имеет дело с идеалом, противостоящим чувственным объектам. Естественно сделать еще один шаг вперед и доказывать, что мысль благороднее чувства, а объекты мысли более реальны, чем объекты чувственного восприятия. Чистая математика также льет воду на мельницу мистических доктрин об отношении времени к вечности, ибо математические объекты, например числа (если они вообще реальны), являются вечными и вневременными. А подобные вечные объекты могут в свою очередь быть истолкованы как мысли бога. Отсюда платоновская доктрина, согласно которой бог является геометром, а также представление сэра Джемса Джинса о том, что бог предается арифметическим занятиям»[10]. Здесь обрисован один из источников разбираемой философской установки. Дальнейшие мы укажем ниже.

Проследим, в чем выражался не «общий» платонизму о котором говорит Рассел в приведенном отрывке, а именно математический платонизм. Эта разновидность платонизма очень четко проявилась в следующих словах одного из виднейших математиков прошлого века — Шарля Эрмита (1822—1901): «Я верю, что числа и функций анализа не являются произвольным созданием нашего разума; я думаю, что они существуют вне нас в силу той же необходимости, как и объекты реального мира, и мы их встречаем идя их открываем и изучаем точно так, как это делают физики, химики или зоологи»[11]. Эти слова означают, что числа и функции похожи не на приборы и инструменты, — скажем, на счетчик Гейгера или масс-спектограф Астона, которые придумали люди» а на виды растений или животных, скажем, на баобаб или кенгуру, которые существуют фактически, независимо от желания человека от знания человека об их существовании и которые человек со временем лишь обнаруживает.

Первая причина таких представлений указана Расселом — это впечатление вечности, неизменности и совершенства, которое производят математические объекты. Ключ к пониманию второй причины содержится в приведенной цитате из Эрмита, в его словах «существуют в силу необходимости». Смысл, который обычно вкладывается в эти слова, достаточно прост. Если мы, скажем, возводим двойку в десятую степень, то получаем число 1024 абсолютно независимо от нашего желания — необходимым образом; значит, тот факт, что 210 = 1024, имел место и до того как мы начали вычисление, и даже до того как появились люди на Земле. Возьмем другой, более «научный» пример. В свое время перед математиками стояла задача о решении общего уравнения третьей степени, но попытки справиться с ней не увенчивались успехом. Наконец, в 1545 году Джироламо Кардано (1501—1576) в упоминавшейся уже нами (с. 34) работе «Великое искусство...» изложил (открытый ранее Н. Тартальей) метод нахождения корней произвольного кубического уравнения[12]. Проблема была закрыта.

Поставим вопрос: существовали ли корни у произвольного кубического уравнения до Тартальи и Кардано? По-видимому, в каком-то смысле, да, ибо если бы он их «изобрел», то почему они обладают именно данными свойствами и не могут обладать свойствами, несовместимыми с установленными этими математиками?

Как мы видим, ситуация не так проста, как может показаться на первый взгляд. В XIX столетии, когда математические работы полились рекой, ощущение «открывания» стало особенно сильным и сказалось на математическом мировоззрении.

Работая изо дня в день с числами, функциями и уравнениями, любой математик всегда воспринимает их как внешнюю данность. Для «математического платоникам эта данность становится абсолютной. Но, как ни странно, на определенном этапе развития науки эта разновидность догматизма сыграла свою положительную роль. На это обратил внимание уже цитировавшийся нами Ласло Кальмар, который указал на то, что «платонистская» объективизация математических идей «защищала их от отторжения здравым смыслом как иллюзорных и стимулировала развитие математики до той поры, пока математики и философы не смогли лучше понять сущность — и пользу абстракции»[13].

К тому времени, когда была создана теория дедекиндовых сечений, точка зрения математиков на то, какие объекты в их науке более всех «существуют сами по себе», вырисовалась совершенно отчетливо. Математики по молчаливому соглашению выделили главную «платоновскую идею» - математический объект, занявший в иерархии рассматриваемых ими существований центральное положение. Этим объектом стало «множество». В математической науке наступила эпоха теоретико-множественного мышления.

вернуться

68

10. Б. Рассел. История западной философии. М., 1959, с. 56.

вернуться

69

11. Цитируется по кн.: Н. Бурбаки. Очерки по истории математики. М., 1963. с. 29.

вернуться

70

12. См. об этом в кн.: История математики. Т. 1. М., 1970, с. 292 и далее.

вернуться

71

13. См. статью Л. Кальмара, указанную в примечании 13 к гл.1, е.188,