Выбрать главу

В связи с именем Фреге часто говорят о «логицизме» — одном из трех главных направлений философии математики начала нашего века, провозгласившем, что математика есть часть логики. Действительно, считая арифметику фундаментом математического анализа, Фреге полагал, что если ее удастся обосновать» то будет обоснована значительная часть математики. При этом обоснование Фреге понимал как выражение через что-то более надежное, не вызывающее сомнений. Этим более надежным была для Фреге логика.

Установка Фреге на чисто логическое обоснование математики лежала вполне в русле господствовавшего в тогдашней математике теоретико-множественного мировоззрения. Это объясняется тем, что между логикой, принципы которой были заложены Аристотелем — и которая называется классической логикой — и теорией множеств (теорией классов объектов) существует глубокая связь и далеко идущий параллелизм.

В самом деле, как мы видели в главе 3, теория основных операций над множествами — логика классов—изоморфна логике высказываний. Одни и те же умозаключения (например, модус Celarent, см. с. 44—45 и 63—64) могут быть представлены как в одной, так а в другой теории. Определяя операции над множествами и отношения между ними, мы прибегаем к логическим понятиям. Мы говорим, например: «Элемент x принадлежит пересечению двух множеств множеств М1 и М1, если, и только если, он принадлежит множеству М1 и принадлежит множеству М2(употребляем операцию конъюнкции); «Элемент x принадлежит объединению множеств М1 и М2 если он принадлежит множеству М1 или принадлежит множеству М2(употребляем дизъюнкцию); «Множество M1 включается во множество M2 если для всякого элемента x из принадлежности его множеству M1 следует его принадлежность множеству М2» (используем понятие логического следования и обобщение «для всякого», соответствующее оператору исчисления предикатов, называемому квантором общности); «Множества M1 и M2 равны, если для всякого элемента x этот элемент принадлежит множеству M1 тогда, и только тогда, когда он принадлежит множеству М2» (употребляем эквиваленцию и квантор общности). Наконец, на множества можно смотреть как на объемы понятий, или предикатов, то есть считать, с одной стороны, что всякое свойство или одноместный предикат (например, «быть поэтом», «быть натуральным числом» и т. д.) определяет некоторое множество предметов (поэтов, натуральных чисел и пр.), всякое двучленное отношение (например, «число x больше числа y») определяет множество пар предметов, находящихся в этом отношении, и то же самое для отношения между любым конечным числом членов, а с другой стороны — что по всякому множеству (предметов, двоек, троек и т. п. предметов) можно построить соответствующий предикат — предикат «быть элементом данного множества».

Как, опираясь на этот параллелизм и взаимосвязь множеств и предикатов, определить натуральные числа? Подход Фреге состоял в следующем[22] (весьма родственное, но чисто теоретико-множественное определение натуральных чисел предложил Кантор[23]). Исходным является понятие взаимно однозначного соответствия между элементами двух произвольных множеств (заметим, что при этом не используется никаких «числовых» понятий, даже единицы). Множества рассматриваются как порождаемые некоторыми одноместными предикатами. Далее вводится понятие «равнообъемности» предикатов. Два предиката, порождающие множества, между элементами которых можно установить взаимно однозначное соответствие, называются равнообъемыми.

Например, предикаты «быть изобретателем математического анализа» и «быть спутником Марса» равнообъемны, поскольку можно установить взаимно однозначное соответствие: Ньютон — Фобос, Лейбниц — Деймос. Отношение равнообъемности является отношением типа равенства (отношением, аналогичным отношению, скажем, равенства по весу), а потому разбивает все множество предикатов на непересекающиеся подмножества, в каждом из которых оказываются предикаты одного и того же объема (подобно тому, как отношение равенства по весу разбивает все множество тел на непересекающиеся подмножества тел, имеющих одинаковый вес). Если некоторое множество равнообъемных предикатов содержит предикаты конечного объема, то объем любого из этих предикатов объявляется некоторым натуральным числом. Подробнее, процедура определения состоит в следующем. Нулем объявляется объем предиката х ≠ х, который пуст. Это число можно определить и на языке свойств, сказав: число нуль — это свойство быть множеством, задаваемым предикатом, равнообъемным предикату x ≠ x. Единицей объявляется свойство быть множеством, задаваемым предикатом, равнообъемным какому-либо предикату, в объем которого входит единственный предмет, скажем, предикату «быть Солнцем». Чтобы не возникло впечатления, что единица здесь определяется через самое себя («единственный предмет»), можно вместо предиката «быть Солнцем» взять предикат «быть пустым множеством» (объем которого состоит из единственного предмета — пустое множество только одно) и определить: «Единица есть свойство множества, задаваемого предикатом «быть пустым множеством»». Число два тогда определяется как свойство множества. задаваемого предикатом «х есть предмет, удовлетворяющий либо свойству х ≠ х, либо свойству быть пустым множеством» и т. д. Заметим, что, определяя на этом пути натуральные числа, можно поступить и иначе: считать натуральными числами сами множества равнообъемных конечных множеств.

Как смотреть на это определение? Разумное основание Для данного подхода имеется. Фактически мы хотим определить здесь натуральное число как нечто, присущее всем Равночисленным множествам. Скажем, число два это не есть две утки, два яблока и т. д., а есть то общее, что характеризует все пары предметов. Можно сказать и проще: число два есть и две утки, и два яблока, и т. д.

Но несмотря на всю скрупулезность Фреге, строивши на очерченной логико-множественной базе арифметику натуральных чисел, его логическая конструкция оказалась формально-противоречивой. Суть дела состояла в следующем.

Логическая теория Фреге позволяла, грубо говора вводить в рассмотрение предикаты от предикатов (то есть свойства предикатов и отношения между предикатами предикаты от предикатов, определенных на предикатах, а также множества множеств, множества множеств множеств и т. д. При этом никаких ограничений на образована множеств — на задание их с помощью предикатов — не налагалось. Это допускало в теорию такие образования как «свойство, которым оно само не обладает» или «множество, не входящее в самое себя в качестве элемента». Скажем, множество всех абстрактных понятий содержит само себя в качестве элемента, так как предикат «быть абстрактным понятием» есть тоже абстрактное понятие — в отличив например, от множества людей, которое не содержит саж» себя как элемент, поскольку человечество не есть человек. Поэтому, если быть последовательным в проведении логико-множественного подхода, придется допустить законное» понятия «множества всех множеств, не включающих себя в качестве элемента».

В 1902 году Рассел обнаружил, что в указанном понятии заключено логическое противоречие. Он, видимо, пытался разобраться в возникшей ситуации сам, но сомнения одолевали, и поэтому через год он обратился письменно к Фреге, прося дать разъяснения. Письмо, очевидно, из уважения к Фреге, было написано по-немецки. Мы приводим полный перевод этого исторического документа, сделанный с английского перевода, выполненного Яном ван Хейеноортом и прочитанного лично Бертраном Расселом, разрешившим его публикацию в книге Хейенсюрта «От Фреге до Гёделя»[24] (эта книга представляет собой сборник классических работ — и фрагментов работ — по математической логике и основаниям математики).

Фрайдис-хилл, Хейслмир, 16.6.1902

Дорогой коллега, уже полтора года назад я познакомился с Вашими «Основными законами арифметики», но только сейчас я сумел найти время, чтобы изучить Вашу работу тщательно, как я все время намеревался это сделать. Я обнаружил, что согласен с Вами во всем главном, в частности в том, что Вы отвергаете все психологические моменты в логике, и β Вашей высокой оценке идеографии[25] в основаниях математики, которые сейчас трудно отделить от формальной логики. В связи со многими частными вопросами я нашел в Вашей книге множество рассуждений, тонких исследований и определений, которые тщетно было бы искать в сочинениях других логиков. В вопросах, касающихся функций, я самостоятельно пришел к взглядам, совпадающим с Вашими даже в деталях. Имеется только один пункт, в котором я встретился с трудностью. Вы утверждаете, что функция[26] не нуждается в прямом определении. Я тоже раньше так думал, но сейчас такая точка зрения кажется мне сомнительной из-за следующего противоречия. Пусть w есть предикат «быть предикатом, который не относится к самому себе». Относится ли этот предикат к самому себе? Из любого ответа на этот вопрос вытекает противоположный ответ. Поэтому мы можем заключить, что w не есть предикат. Точно так же не существует такого множества (рассматриваемого как целое), элементами которого являются множества. не содержащие самих себя. Отсюда я заключаю, что при определенных условиях понятию множества не соответствует ничего такого, что может рассматриваться как объект.

вернуться

80

22. Ниже излагается лишь общая идея фрегевского определения натуральных чисел. Полностью изложить его подход здесь, разумеется, не представляется возможным.

вернуться

81

23. Об определении натуральных чисел как конечных кардинальных чисел (по Кантору) см., например: Н. Бурбаки. Теория множеств. М., 1965, с. 197 и далее.

вернуться

81

24. J. van Heienoort. From Frege to Godel. A Source Book in Mathematical Logic. Cambridge (Mass.), 1967, p. 124—125.

вернуться

82

25. Под идеографией Рассел имеет в виду логическую символику.

вернуться

83

26. В теории Фреге предикаты рассматривались как частный случай функций, а именно, как функции, принимающие в качестве своих значений значения «истинно» и «ложно». Эта точка зрения на предикаты общепринята и в настоящее время при содержательном исследовании закономерностей «мира свойств и отношений».