Выбрать главу

C1 X X C2

C1 | П C1

C2 X Л C2

C2 | | C1

Убедимся, что данная программа имитирует поведение нашей кошки. На ленте написана единственная палочка (остальные ячейки пусты); эту палочку воспринимает машина, находящаяся в состоянии С1. В соответствии со второй командой считывающе-записывающая головка машины сделает движение по ленте вправо (кошка залезет на сосну) и останется в том же состоянии (кошка еще не испугалась). Второй такт работы машины определит первая команда:

воспринимая символ х, машина, сохраняя этот символ в обозреваемой ячейке (кошка остается на верхушке сосны), переходит в состояние С2 (кошка пугается высоты). Воспринимая в состоянии С2 символ X, машина приведет в движение свою считывающее-записывающую головку, которая сдвинется влево по ленте на одну ячейку (кошка, воздействуя на барабанные перепонки людей, добивается того, что ее перемещают вниз); это описывается третьей из четверок списка. Последняя команда показывает, что, обозревая символ | в состоянии С2, машина переходит в состояние C1 (увидя привычную обстановку, кошка успокаивается). Дальше опять сработает вторая команда, и процесс начнет повторяться. Машина Тьюринга будет работать неограниченно долго.

Вернемся к вопросу: не шире ли круг действий, осуществляемых машинами Тьюринга, чем круг действий, подведомственных рекурсивным функциям? Оказывается, нет — это доказано совершенно строго, методами, не вызывающими сомнений. То обстоятельство, что рекурсивные функции имеют дело только с числами, а машины Тьюринга — с произвольным алфавитом, содержащим сколь угодно большое (но обязательно конечное) число символов, не имеет существенного значения, поскольку символы можно занумеровать, то есть превратить в числа.

Наконец, рассмотрим еще один подход к понятию вычислимости, разработанный А. А. Марковым. Ведущий отечественный «математический конструктивиста поставил перед собой вопрос: к каким элементарным и математически точно определимым операциям можно было бы свести все процедуры, широко применяющиеся в математике и других науках и носящие название процессов, задаваемых алгоритмами? Известно, что математика прямо-таки изобилует алгоритмами — четкими предписаниями о подлежащих выполнению действиях. Но задача состояла в нахождении общего определения алгоритма (алгорифма) — определения, под которое подпадали бы не только все известные алгоритмы, но и те, которые появятся в будущем. Искомое точное определение алгоритма должно было соответствовать содержательно-интуитивному пониманию алгоритмов в математике: алгоритм — это «точное предписание, определяющее вычислительный процесс, ведущий от варьируемых исходных данных к искомому результату»[12]. Для построения такого определения необходимо было найти «атомы», из которых можно сформировать любое предписание — общепонятное, ясное, однозначно понимаемое. Задача эта была очень важна. Вот как раскрывает ее особую роль известный отечественный специалист по философским проблемам математики С. А. Яновская (1896—1966).

«Начиная с глубокой древности математики строили алгоритмы ... для решения целых классов задач определенного рода. Таковы, например: всем известный алгоритм Эвклида, представляющий собой программу действий, которые нужно выполнить, чтобы, имея любые два целых числа a и b, отыскать их общий наибольший делитель; алгоритм Штурма, позволяющий по заданию коэффициентов многочлена отделить его корни; многие другие алгоритмы алгебры, теории чисел, дифференциальных уравнений и многие, многие другие.

Когда какой-нибудь алгоритм отыскан, то всем ясно что он уже есть: его существование не приходится доказывать.

Но если алгоритм упорно ищут и не находят, то естественно возникает вопрос, возможен ли он вообще? Разве обязательно должен существовать единый прием, позволяющий механически решить (по одной и той же программе) любую из всего класса задач, отличающихся друг от друга значениями каких-либо параметров? Но как доказать несуществование алгоритма, его принципиальную невозможность?

Для этого нужно знать, что, собственно, ищут; нужно иметь четкое определение алгоритма, позволяющее оперировать с этим понятием, как с математическим объектом»[13].

Значимость этой задачи для математики явственно видна на следующем важном примере. Среди двадцати трех проблем, поставленных Гильбертом в докладе «Математические проблемы» на Втором Международном конгрессе математиков в Париже (август 1900 г.), были и такие, которые впоследствии получили отрицательное решение. В частности, такой была десятая по номеру проблема. Приводим ее в формулировке самого Гильберта:

«10. Задача о разрешимости диофантова уравнения.

Пусть задано диофантово уравнение[14] с произвольными неизвестными и целыми рациональными числовыми коэффициентами. Указать способ, при помощи которого возможно после конечного числа операций установить, разрешимо ли это уравнение в целых рациональных числах»[15].

Как мы видим из этого текста, эта проблема была поставлена Гильбертом на интуитивно-содержательном уровне, поэтому для ее решения нужно было проделать огромный путь, развить целые теории, разработать новые математические понятия. Ф. П. Варпаховский и А. Н. Колмогоров, говоря о теории алгоритмов, замечают:

«Оглядываясь на пройденный путь, математики должны быть благодарны десятой проблеме Гильберта уже за то, что она послужила одним из стимулов для создания этой теории»[16]. Решение этой проблемы — решение отрицательное, доказывающее невозможность соответствующего алгоритма, было получено постепенно, усилиями ряда математиков; завершающий результат принадлежит представителю «четвертого поколения» марковской школы Ю. В. Матиясевичу, добившемуся успеха через 70 лет после постановки проблемы Гильбертом[17].

«Ясное и однозначно понимаемое предписание о действиях» может быть дано самыми разными путями: сформулировано на естественном языке (с выбором таких слов и выражений, которые не допускают разночтений), указано математическим соотношением, определено чертежом, номограммой, таблицей, графиком; иногда достаточно просто привести пример осуществления «способа», как его сущность становится ясной. Как же построить уточнение понятия о такого рода способах?

В начале 50-х годов в работах А. А. Маркова (первые публикации которого по теории алгоритмов относятся ко второй половине 40-х годов) получила развитие та идея, что все математические алгоритмы можно свести к повторению одной элементарной операции, выполняемой в строгом соответствии с начертанным на бумаге предписанием, которое после очень простого объяснения на естественном языке или даже демонстрации нескольких примеров становится ясным каждому человеку и всеми людьми понимается одинаково. В 1951 году в «Трудах Математического института АН СССР» (т. XXXVIII) была помещена статья А. А. Маркова «Теория алгорифмов», излагающая новую концепцию, а в 1954 году вышла его большая монография[18]. Ныне она, как и работы Чёрча и Тьюринга, является классической.

Марковские алгоритмы, которым их автор дал название «нормальных алгорифмов», работают над словами в каких-либо алфавитах, перерабатывая их в (другие) слова. Алгорифм состоит из вертикального списка команд (их называют формулами подстановок), каждая из которых имеет вид либо P → •Q, либо Q → P где P и Q — слова в некотором алфавите, не содержащем знаков • и →. Рассмотрим прежде всего действие отдельной формулы подстановки. Пусть в алфавите А = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, —, +, =} дано слово 12 — 11 = 1 и команда

1 → 2.

Чтобы применить эту команду к данному слову, нужно найти в слове, двигаясь слева направо, первое вхождение левой (до стрелки) части команды и заменить его на правую (после стрелки) часть команды. Ясно, что в результате этого получится слово

22—11=1.

Если мы данную команду применим к этому слову, то получим:

вернуться

129

12. А. А. Марков. Теория алгорифмов, с. 3 (см. примечание 1)

вернуться

130

13. С. Я. Яновская. О некоторых чертах развития математической логики и отношении ее к техническим приложениям.— В кн.: Применение логики в науке и технике. М., 1960, с. 10.

вернуться

131

14. Диофантово уравнение — алгебраическое уравнение с целочисленными коэффициентами, для которого отыскиваются целые решения.

вернуться

132

15. Проблемы Гильберта. М., 1969, с. 39.

вернуться

133

16. Ф. П. Варпаховскии. А. Н. Колмогоров. О решении десятой проблемы Гильберта.— «Квант», 1970, № 7 у с. 42.

вернуться

134

17. Ю. В. Матиясевич. Диофантовость перечислимых множеств.—Доклады АН СССР, 1970, т. !91, № 2.

вернуться

135

18. А. А. Марков. Теория алгорифмов. См. примечание I.