Действуя похожим образом, Пуанкаре определил многомерные числа Бетти и коэффициенты зацепления, только в качестве циклов он использовал не петли, а многообразия более высокой размерности. Пуанкаре доказал, что числа Бетти и коэффициенты зацепления — топологические инварианты многообразий. В табл. 23.1 приведены числа Бетти и коэффициенты зацепления замкнутых поверхностей. Мы обозначаем bi i-е число Бетти[14].
Рис. 23.5. Для бутылки Клейна 2b = b + c + (—b) + (—с) = 0
Таблица 23.1. Числа Бетти и коэффициенты зацепления поверхностей
В «Analysis Situs» Пуанкаре следовал идеям Римана и Бетти. Но, отвечая на призыв к строгости, в последующих статьях он сменил направление. Именно тогда он начал работать с симплициальными комплексами, n-мерным обобщением многогранников. В этом контексте циклы в теории[18] гомологий строятся, исходя из особенностей многогранника. Например, 1-мерный цикл — это не произвольная петля на многообразии, а последовательность ребер многогранника, образующая петлю.
С практической точки зрения, работать с симплициальными комплексами гораздо проще, чем с первой моделью Пуанкаре. Пуанкаре мог описать комплекс в терминах матрицы инциденций — прямоугольного массива чисел, показывающего, какие симплексы являются соседними. Вычисление чисел Бетти и коэффициентов зацепления с помощью этих матриц стало чисто механическим процессом.
Располагая таким обобщением многогранников на многомерный случай, естественно задаться вопросом, можно ли обобщить эйлерову характеристику на многомерные многообразия. Пункаре, как Коши и Шлефли до него, обобщил эйлерову характеристику, вычислив знакопеременную сумму числа k-симплексов. Иными словами, если многообразие M представлено в виде симплициального комплекса с ak симплексами размерности k, то он определил эйлерову характеристику как
χ(M)) = a0 — a1 +a2 —… ± аn.
Это обобщение эйлеровой характеристики на n-мерное пространство называется характеристикой Эйлера-Пуанкаре многообразия M.
Например, сплошной тор является 3-мерным многообразием с краем (краем является тор, 2-мерное многообразие). На рис. 23.6 показано, как представить сплошной тор в виде симплициального комплекса. У него 12 вершин (0-симплексов), 36 ребер (1-симплексов), 36 граней (2-симплексов) и 12 треугольных пирамид (3-симплексов). Поэтому a0 = 12, a1 = 36, a2 = 36 и a3 = 12, так что характеристика Эйлера-Пуанкаре равна χ(сплошной тор) = 12–36 + 36–12 = 0.
Рис. 23.6. Симплициальный комплекс для сплошного тора
Так же как эйлерова характеристика является топологическим инвариантом поверхностей, так и характеристика Эйлера-Пуанкаре является инвариантом n-мерных многообразий. Чтобы доказать этот факт, Пуанкаре установил нечто гораздо более интересное. Он доказал, что если k-е число Бетти равно bk, то
χ(M)) = b0 — bi1 + b2 —… ± bn.
То есть, чтобы вычислить характеристику Эйлера-Пуанкаре, мы игнорируем коэффициенты зацепления и берем знакопеременную сумму чисел Бетти! В табл. 23.1 показано, что это равенство имеет место для чисел Бетти поверхностей. Поскольку каждое число bk является топологическим инвариантом, таковым же является и их знакопеременная сумма. Стало быть, характеристика Эйлера-Пуанкаре — топологический инвариант.
В 1895 году Пуанкаре открыл изумительно симметричное соотношение между числами Бетти210. Последовательность чисел Бетти для нескольких многообразий показана в табл. 23.2. Пуанкаре заметил, что числа Бетти встречаются парами, причем первые такие же, как последние: b0 = bn, b1 = bn-1 и т. д. Это и стало утверждением знаменитой теоремы двойственности Пуанкаре.
Таблица 23.2. Симметрия чисел Бетти
Мы уже встречались с двойственностью, когда обсуждали подмеченное Кеплером объединение платоновых тел в пары (глава 6). В обоих случаях термин «двойственность» выбран не случайно; наблюдение Кеплера — это замаскированная двойственность Пуанкаре. Теорема двойственности Пуанкаре утверждает, что при вычислении чисел Бетти многообразия мы вправе менять местами роли i-мерных и (n — i) — мерных симплексов. Двойственность платоновых тел иллюстрирует это поведение. Например, икосаэдр дает пример разбиения сферы на вершины, ребра и грани. Если воспользоваться двойственностью Кеплера и преобразовать каждую вершину икосаэдра в грань, а каждую грань — в вершину, то получится додекаэдр — еще одно разбиение сферы.
14
Глобальная теорема Гаусса-Бонне утверждает, что полная кривизна поверхности S равна ∫Sk dA = 2πχ(S).
18
Пуанкаре, следуя введенному Риманом соглашению, считал, что i — е число Бетти на единицу больше этого значения, но для простоты мы придерживаемся современной нотации.