Выбрать главу

219. Smale (1961).

220. Smale (1990).

221. Там же.

222. Stallings (1962); Stallings (1960); Zeeman (1961); Zeeman (1962).

223. Freedman (1982).

224. Smale (1998).

225. Thurston (1982).

226. Hamilton (1982).

227. Perelman (2002); Perelman (2003b); Perelman (2003a).

228. Cao and Zhu (2006a); Cao and Zhu (2006b); Kleiner and Lott (2006); Morgan and Tian (2006).

229. Mackenzie (2006).

230. Дополнительные сведения см. в Nasar and Gruber (2006).

231. Nasar and Gruber (2006).

232. цитируется по Nasar and Gruber (2006).

233. Poincare (1913), 366.

Список литературы

Abbott, E. A. (2005). Flatland: A romance of many dimensions. Princeton, NJ: Princeton University Press. With an introduction by Thomas Banchoff.

Abel, N. H. (1881). Oeuvres completes de Niels Henrik Abel, vol. 2. Christiania, Norway: Imprimerie De Grondahl & Son.

Adams, C. C. (1994). The knot book: An elementary introduction to the mathematical theory of knots. New York: W. H. Freeman.

Aigner, M., and G. M. Ziegler (2001). Proofs from The Book (2nd ed.). Including illustrations by Karl H. Hofmann. Berlin: Springer-Verlag.

Albers, D. J. (1994). Freeman Dyson: Mathematician, physicist, and writer. The College Mathematics Journal 25 (1), January, 2-21.

Alexander, J. T. (1989). Catherine the Great: Life and legend. New York: Oxford University Press.

Allan, D. J. (1975). Plato. In C. C. Gillispie (ed.), Dictionary of scientific biography. Vol. 11, 22–31. New York: Charles Scribner's Sons.

Andrews, P. (1988). The classification of surfaces. Amer.Math. Monthly 95 (9), 861–867.

Appel, K., and W. Haken (1977). Every planar map is four colorable. I. Discharging. Illinois J. Math. 21 (3), 429–490.

Appel, K., W. Haken, and J. Koch (1977). Every planar map is four colorable. II. Reducibility. Illinois J. Math. 21 (3), 491–567.

Applegate, D., G. Jacobson, and D. Sleator (1991). Computer analysis of sprouts. Technical Report CMU-CS-91-144, Carnegie Mellon University.

Asimov, I. (1965). A short history of chemistry: An introduction to the ideas and concepts of chemistry. Science Study Series. Garden City, NY: Anchor Books, Doubleday.

Ball, W. W. R. (1892). Mathematical recreations and problems of past and present times. London: MacMillan.

Baltzer, R. (1885). Eine Erinnerung an Mobius und seinen Freund Weiske. Ber. Verh. K. Sachs. Ges.Wiss. Leipzig 37, 1–6.

Barabasi, A.-L. (2002). Linked: How everything is connected to everything else and what it means. Cambridge, MA: Perseus.

Barnette, D. (1983). Map coloring, polyhedra, and the four-color problem. Washington DC: Mathematical Association of America.

Barr, S. (1964). Experiments in topology. New York: Dover.

Baxter, M. (1990). Unfair games. Ureka: The Journal of the Archimedeans 50, 60–68.

Becker, J. C., and D. H. Gottlieb (1999). A history of duality in algebraic topology. In I. M. James (ed.), History of topology, 725–745. Amsterdam: North-Holland.

Bell, E. T. (1937). Men of Mathematics. New York: Simon and Schuster.

--. (1945). The development of mathematics. New York: McGraw-Hill.

--. (1987). Mathematics: Queen and servant of science. MAA Spectrum series. Washington DC: Mathematical Association of America.

Biggs, N. (1993). The development of topology. In J. Fauvel, R. Flood, and R. Wilson (eds.), Mdbius and his band: Mathematics and astronomy in nineteenthcentury Germany, 105–119. New York: The Clarendon Press, Oxford University Press.

Biggs, N. L., E. K. Lloyd, and R. J. Wilson (1986). Graph theory 1736–1936. Oxford: Clarendon Press.

Blaschke, W. (1921). Vorlesungen uber Differentialgeometrie. Berlin-Heidelberg: Springer-Verlag.

Bonnet, O. (1848). Memoire sur la theorie generale des surfaces. J. Ec. Polytech. 19, 1-146.

Boyer, C. B. (1951). The foremost textbook of modern times. Amer.Math. Monthly 58, April, 223–226.

Boyer, C. B., and U. Merzbach (1991). A history of mathematics (2nd ed.). New York: John Wiley & Sons.

Boyle, R. (1937). The sceptical chymist, with an introduction by M. M. Pattison Muir. Everyman's Library. London: J. M. Dent and Sons.

Bradley, R., and E. Sandifer (eds.) (2007). Leonhard Euler: Life, work and legacy. Vol. 5 of Studies in the history and philosophy of mathematics. Amsterdam: Elsevier.

Brahana, H. R. (1921). Systems of circuits on two-dimensional manifolds. Ann. Of Math. (2) 23 (2), 144–168.

Breitenberger, E. (1999). Johann Benedict Listing. In I. M. James (ed.), History of topology, 909–924. Amsterdam: North-Holland.

Brewster, D. (1833). The life of Euler. In Letters of Euler on different subjects in natural philosophy addressed to a German princess, 15–28. New York: J. and J. Harper.

Brisson, L., and F. W. Meyerstein (1995). Inventing the universe: Plato's «Ti-maeus», the big bang, and the problem of scientific know ledge. Albany, NY: State University of New York Press.

Brouwer, L. E. J. (1909). On continuous one-to-one transformations of surfaces to themselves. Proc. Kon. Nederl. Akad. Wetensch. Ser. A 11, 788–798.

--. (1911). Beweis der Invarianz der Dimensionzahl. Mathe matische Annalen 69, 169–175.

--. (1912). Uber Abbildung von Mannigfaltigkeiten. Mathematische Annalen 71 (1), 97-115.

Bulmer-Thomas, I. (1967). Selections illustrating the history of Greek mathematics with an English translation by Ivor Thomas, Vol. 2 of Loeb Classical Library. Cambridge, MA: Harvard University Press.

--. (1971). Euclid. In C. C. Gillispie (ed.), Dictionary of scientific biography. Vol. 4, 414–437. New York: Charles Scribner's Sons.

--. (1976). Theaetetus. In C. C. Gillispie (ed.), Dictionary of scientific biography. Vol. 13, 301–307. New York: Charles Scribner's Sons.

Burau, W. (1976). Staudt, Karl Georg Christian von. In C. C. Gillispie (ed.), Dictionary of scientific biography. Vol. 8, 4–6. New York: Charles Scribner's Sons.

Burckhardt, J. J. (1983). Leonhard Euler, 1707–1783. Math. Mag. 56 (5), 262273.

Burde, G., and H. Zieschang (1999). Development of the concept of a complex. In History of topology, 103–110. Amsterdam: North-Holland.

Burke, J. G. (1972). Hessel, Johann Friedrich Christian. In C. C. Gillispie (ed.), Dictionary of scientific biography. Vol. 6, 358-59. New York: Charles Scribner's Sons.

Burkert, W. (1972). Lore and science in ancient Pythagoreanism. Cambridge, MA: Harvard University Press.

Cajori, F. (1927). Frederick the Great on mathematics and mathematicians. Amer. Math. Monthly 34, 122–130.

Calinger, R. (1968). Frederick the Great and the Berlin Academy of Sciences (1740–1766). Annals of Science 24 (3), 239–249.

--. (1996). Leonhard Euler: The first St. Petersburg years (1727–1741). His-toria Math. 23 (2), 121–166.

Cao, H.-D., and X.-P. Zhu (2006a). A complete proof of the Poincare and ge-ometrization conjectures-application of the Hamilton-Perelman theory of the Ricci flow. Asian Journal of Mathematics 10 (2), June, 165–492.

--. (2006b). Erratum to «A complete proof of the Poincare and geometri-zation conjectures-application of the Hamilton-Perelman theory of the Ricci flow». Asian Journal of Mathematics 10 (4), December, 663–664.

Carruccio, E. (1970). Betti, Enrico. In C. C. Gillispie (ed.), Dictionary of scientific biography. Vol. 2, 104–106. New York: Charles Scribner's Sons.

Casselman, B. (2004). Mathematical illustrations: A manual of geometry and Post-Script. New York: Cambridge University Press.