--. (1904). Cinquieme complement a l'analysis situs. Rend. Circ. Math. D. Palermo 18, 45-110.
--.(1913). The foundations of science: Science and hypothesis, the value of science, science and method. Science and Education. New York: The Science Press.
Poinsot, L. (1810). Memoire sur les polygones et les polyedres. Journal de l'ecole polytechnique 4, 16–48.
Polya, G. (1954). Induction and analogy in mathematics. Vol. 1 of Mathematics and plausible reasoning. Princeton, NJ: Princeton University Press.
Pont, J.-C. (1974). La topologie algebrique des origines а Poincare. Paris: Presses Universitaires de France.
Przytycki, J. (1992). A history of knot theory from Vandermonde to Jones. Aportaciones Matematicas Comunicaciones 11, 173–185.
Rado, T. (1925). Uber den begriff von Riemannsche flache. Acta Univ. Szeged 2, 101–120.
Ranicki, A. A., A. J. Casson, D. P. Sullivan, M. A. Armstrong, C. P. Rourke, and G. E. Cooke (1996). The Hauptvermutung book, volume 1 of K-Monographs in Mathematics. A collection of papers of the topology of manifolds. Dordrecht: Kluwer Academic Publishers.
Read, J. (1966). Prelude to chemistry: An outline of alchemy, its literature and relationships. Cambridge, MA: The M.I.T. Press.
Riasanovsky, N. V. (1993). A History of Russia (5th ed.). New York: Oxford University Press.
Richeson, D. (2007). The polyhedral formula. In R. Bradley and E. Sandifer (eds.), Leonhard Euler: Life, work and legacy. Vol. 5 of Studies in the history and philosophy of mathematics, 421-39. Amsterdam: Elsevier.
Riemann, G. F. B. (1851). Grundlagen fur eine allgemeine Theorie derFunctionen einer veranderlichen complexen Grosse. PhD thesis, Gottingen.
--. (1857). Theorie der Abel'schen Functionen. Journal fur Mathematik 54, 101–155. Also in Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass, Berlin: Springer, 1990, 88-142.
Russell, B. (1957). The study of mathematics. In Mysticism and Logic, 55–69. Garden City, NY: Doubleday.
--. (1967). The autobiography of Bertrand Russell, vol. 1. Boston: Little, Brown.
Sachs, H., M. Stiebitz, and R. J. Wilson (1988). An historical note: Euler's Konigsberg letters. Journal of Graph Theory 12 (1), 133–139.
Salzberg, H. W. (1991). From caveman to chemist: Circumstances and achievements. Washington DC: American Chemical Society.
Samelson, H. (1995). Descartes and differential geometry. In Geo metry, topology, & physics, Conf. Proc. Lecture Notes in Geometry and Topology, IV, 323–328. Cambridge, MA: Internat. Press.
--. (1996). In defense of Euler. Enseign. Math. (2) 42 (3–4), 377–382.
Sandifer, E. (2004). How Euler did it: V, E and F, parts 1 and 2. Mathematical Association of America Online. http://www.maa.org/news/howeulerdidit.html.
Sarkaria, K. S. (1999). The topological work of Henri Poincare. In History of topology, 123–167. Amsterdam: North-Holland.
Schechter, B. (1998). My brain is open: The mathematical journeys of Paul Erdos. New York: Touchstone.
Schlafli, L. (1901). Theorie der vielfachen Kontinuitat. Denkschr. Schweiz. naturf. Ges. 38, 1-237.
Scholz, E. (1999). The concept of manifold, 1850–1950. In I. M. James (ed.), History of topology, 25–64. Amsterdam: North-Holland.
Seifert, H. (1934). Uber das Geschlecht von Knotten. Math. Ann. 110, 571–592.
Seifert, H., and W. Threlfall (1980). Seifert and Threlfalclass="underline" A textbook of topology, vol. 89 of Pure and Applied Mathematics. Translated from the German edition of 1934 by Michael A. Goldman, with a preface by Joan S. Birman. With «Topolo-gy of 3-dimensional fibered spaces» by Seifert, translated from the German by Wolfgang Heil. New York: Academic Press. Harcourt Brace Jovanovich Publishers.
Senechal, M. (1988). A visit to the polyhedron kingdom. In M. Senechal and G. Fleck (eds.), Shaping space: A polyhedral approach, proceedings of 1984 conference held in Northampton, MA, 3-43. Boston, Design Science Collection, Birkhauser Boston.
Shakespeare, W. (1992). Hamlet. New York: Dover.
--. (2002). Twelfth night. Woodbury, CT: Barron's Educational Series.
Simmons, G. F. (1992). Calculus gems: Brief lives and memorable mathematics. With portraits by Maceo Mitchell. New York: McGraw-Hill.
Simpson, J., and E. Weiner (eds.) (1989). Oxford English Dictionary (2nd ed.). Oxford: Clarendon Press.
Sloane, N. J. A. (2007). The online encyclopedia of integer sequences. http://www.research.att.com/~njas/sequences.
Smale, S. (1961). Generalized Poincare's conjecture in dimensions greater than four. Ann. of Math. (2) 74, 391–406.
--. (1990). The story of the higher dimensional Poincare conjecture (what really actually happened on the beaches of Rio). Math. Intelligencer 12 (2), 44–51.
--. (1998). Mathematical problems for the next century. Math. Intelligencer 20 (2), 7-15.
Sommerville, D. M. Y. (1958). An introduction to the geometry of n dimensions. New York: Dover.
Speziali, P. (1973). L'huillier, Simon-Antoine-Jean. In C. C. Gillispie (ed.), Dictionary of scientific biography. Vol. 8, 305–307. New York: Charles Scribner's Sons.
Stallings, J. (1960). Polyhedral homotopy-spheres. Bull. Amer. Math. Soc. 66, 485–488.
Stallings, J. (1962). The piecewise-linear structure of Euclidean space. Proc. Cambridge Philos. Soc. 58, 481–488.
Steiner, J. (1826). Leichter Beweis eines stereometrischen Satzes von Euler. Journal fur die reine und angewandte Mathematik 1, 364–367.
Steinitz, E. (1922). Polyeder und raumeinteilungen. In W. F. Meyer and H. Mohrmann (eds.), Encyclopadie der mathematischen Wissenschaften. Vol. 3 (Geometrie), 1-139. Leipzig: Teubner.
Stillwell, J. (2002). Mathematics and its history (2nd ed.). Undergraduate Texts in Mathematics. New York: Springer-Verlag.
Struik, D. J. (1972). Gergonne, Joseph Diaz. In C. C. Gillispie (ed.), Dictionary of scientific biography. Vol. 5, 367–369. New York: Charles Scribner's Sons.
Tait, P. G. (1883). Johann Benedict Listing. Nature 28, February 1, 316. Also in Scientific Papers of Peter Guthrie Tate, vol. 2, Cambridge: Cambridge University Press, 81–84.
--. (1884). Listing's Topologie. Introductory address to the Edinburgh Mathematical Society, November 9, 1883. Philosophical Magazine 17 (5), January, 30–46.
Taubes, G. (1987). What happens when hubris meets nemesis. Discover 8, July, 66–77.
Taylor, A. E. (1929). Plato: The man and his work. New York: The Dial Press.
--. (1962). A commentary on Plato's Timaeus. London: Oxford University Press.
Terquem, O. (1849). Sur les polygones et les polyedres etoiles, polygones funiculaires. Nouv. Ann. Math. 8, 68–74.
Terrall, M. (1990). The culture of science in Frederick the Great's Berlin. Hist. Sci. 28, 333–364.
Thistlethwaite, M. B. (1987). A spanning tree expansion of the Jones polynomial. Topology 26 (3), 297–309.
Thomassen, C. (1992). The Jordan-Schonflies theorem and the classification of surfaces. Amer. Math. Monthly 99 (2), 116–130.
Thoreau, H. D. (1894). In F. B. Sanborn (ed.), Familiar Letters of Henry David Thoreau. Boston: Houghton, Mifflin and Co.
Thurston, W. P. (1982). Three-dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer. Math. Soc. (N.S.) 6 (3), 357–381.
--. (1997). Three-dimensional geometry and topology, vol. 1. Princeton, NJ: Princeton Univ. Press.
Tucker, A. W., and F. Nebeker (1990). Lefschetz, Solomon. In C. C. Gillispie (ed.), Dictionary of scientific biography. vol. 18, 534–539. New York: Charles Scribner's Sons.
Turnbull, H. W. (1961). The great mathematicians. New York: New York University Press.
Twain, M. (1894). Tom Sawyer abroad. New York: Jenkins & Mccowan.
van der Waerden, B. L. (1954). Science awakening. English translation by Arnold Dresden. Groningen, Netherlands: P. Noordhoff.