Леонард Эйлер похоронен в Санкт-Петербурге, в России.
Трудно перечислить все величайшие достижения Эйлера на поприще математики. Мы могли бы процитировать одну из его многочисленных теорем. Или упомянуть написанные им учебники, снискавшие большой успех, например «Введение в анализ бесконечно малых», который историк науки Карл Бойер назвал самым влиятельным учебником в истории современной математики. Можно было бы назвать его работы по прикладной математике, например книгу «Механика», в которой впервые методы математического анализа систематически применяются к физике. Или вспомнить о сочинениях для неспециалистов, таких как чрезвычайно популярные в свое время «Письма немецкой принцессе» — собрание уроков, написанное для племянницы Фридриха Великого принцессы Ангальт-Дессауской. Быть может, стоило бы обратить внимание на его умение организовать и оформить изолированные результаты и, казалось бы, далекие друг от друга идеи в связное и упорядоченное тело математики. Или на элегантную и полезную нотацию, введенную им: Эйлер первым стал использовать букву e для обозначения основания натуральных логарифмов; он ввел в обиход символ π; в конце жизни он стал использовать букву i для обозначения √–1 (популяризировал эту нотацию Гаусс); он обозначал буквами a, b, c стороны треугольника, противоположные вершинам A, B, C; он использовал символ ∑ для обозначения суммы; он стал обозначать конечные разности Δx, и он же начал использовать нотацию f(x) для функции.
Трудно выделить какую-то одну из многих и многих теорем Эйлера как самую важную. Некоторые считают, что это соотношение, связывающее числа 0, 1, π, e и i:
еπі + 1 = 0.
А быть может, это один из его удивительных бесконечных рядов, демонстрирующих мощь математического анализа. Или одна из его теорем в теории чисел, например та, что подвела черту под знаменитыми гипотезами Пьера Ферма (1601–1665).
Но мы, конечно, сосредоточимся на простой формуле, связывающей количество вершин, ребер и граней многогранника:
V — E + F = 2.
Недавний опрос математиков показал, что, по их мнению, формула Эйлера для многогранников — вторая по красоте теорема во всей математике. А самой красивой, по мнению большинства, является формула Эйлера eπi + 1 = 018,21.
Чтобы понять формулу Эйлера для многогранников, мы должны будем поближе познакомиться с многогранниками. Итак, что же такое многогранник?
Приложения к главе
4. Dunham (1999), xiii.
5. Quoted in Youschkevitch (1971).
6. Riasanovsky (1993), 285.
7. Vucinich (1963), 69.
8. Quoted in Condorcet (1786).
9. Quoted in Eves (1969b), 48.
10. Quoted in Boyer and Merzbach (1991), 440.
11. Quoted in Cajori (1927).
12. Quoted in Calinger (1996).
13. Quoted in Cajori (1927).
14. Riasanovsky (1993), 248.
15. Quoted in Alexander (1989), 173.
16. Weil (1984).
17. Hartley (2003).
18. Hardy (1992), 70.
19. Vucinich (1963), 146-47.
20. Condorcet (1786).
21. Wells (1990).
Глава 2
Что такое многогранник?
Сударыня, хотя слово древнее, каждый берет его в собственное пользование новехоньким и изнашивает самостоятельно. Это слово заполнено смыслом, как надутый бычий пузырь, и теряет его столь же быстро. Его можно проткнуть, как пузырь, затем заклеить и вновь надуть.
Согласно Оксфордскому словарю английского языка, впервые термин «polyhedron» (полиэдр, многогранник) в английском тексте встретился в переводе «Начал» Евклида (ок. 300 года до н. э.), выполненном сэром Генри Биллингсли в 1570 году. Слово «полиэдр» происходит от греческих корней «поли», что значит «много», и «hedra» — «основание». Полиэдр можно поставить на одно из многих его оснований. Хотя слово «hedra» первоначально означало «сиденье», оно используется для обозначения грани полиэдра по крайней мере со времен Архимеда23. Поэтому правильный перевод слова «полиэдр» — «многогранник». Во времена Эйлера транслитерация «hedra» на латиницу уже была общепринятой.
Многогранники — это хорошо знакомые геометрические объекты, состоящие из многоугольных граней. Примеры многогранников, показанные на рис. 2.1, включают обычный куб, невзрачную треугольную пирамиду (формально тетраэдр), элегантный икосаэдр и похожий на футбольный мяч усеченный икосаэдр.