Рис. 2.1. Примеры многогранников
Из-за своей красоты и симметрии многогранники занимают заметное место в искусстве, архитектуре, ювелирном деле и играх. Всякий, кто заходил в магазин оккультных предметов, знает, что некоторые люди верят, будто многогранники (а особенно кристаллы) обладают магическими свойствами. Многогранники встречаются и в природе, такую форму имеют драгоценные камни и некоторые одноклеточные организмы.
Свойства многогранников уже тысячи лет очаровывают математиков. Для доказательства теорем о многогранниках нужно иметь строгое определение этого термина. Но лишь сравнительно недавно была предпринята попытка дать такое определение. А в течение многих лет до того математики довольствовались определением типа «узнаешь его, когда увидишь». Они соглашались с философией Шалтая-Болтая, который говорил Алисе: «Когда я беру слово, оно означает то, что я хочу, не больше и не меньше». Но такой путь ни к чему хорошему не приведет. Как писал Анри Пуанкаре (1854–1912):
Объекты, которыми занимаются математики, долгое время не имели хороших определений; эти предметы казались известными, потому что их себе представляли при помощи чувств или воображения. Но в действительности их образ отличался грубостью; не было точных идей, на которые могли бы опереться доказательства24.
В отсутствие надлежащего определения, как в данном случае, возникают теоретические неточности и рассогласования. Ниже мы увидим, что данное Эйлером доказательство формулы для многогранников не вполне строгое, потому что он не определил явно, что такое многогранник.
Придумать хорошее определение на удивление трудно. На протяжении столетий было много предложений, не все из которых эквивалентны. Из-за этой неразберихи не существует единого определения многогранника, применимого ко всей обширной литературе по этим математическим объектам.
Наивное определение могло бы звучать так: многогранник — это тело, состоящее из многоугольных граней, такое, что каждое ребро является общим ровно для двух граней, а в каждой вершине сходится по меньшей мере три ребра. На первый взгляд это определение разумно, но при ближайшем рассмотрении оказывается, что существуют удовлетворяющие ему тела, которые не согласуются с нашим интуитивным представлением о многограннике. Никто не станет спорить с тем, что объекты на рис. 2.1 — многогранники, но вот следует ли отнести к ним тела на рис. 2.2 (все они удовлетворяют приведенному выше определению)?
Это не праздный вопрос. Исторически нет единого мнения о том, считать ли объекты на рис. 2.2 многогранниками. Крайний левый объект, куб с вырезанным уголком, является многогранником согласно большинству современных определений, однако самые старые определения — в частности, неявно подразумеваемые греками и Эйлером — не допускают вырезов в многограннике. Аналогично второе тело удовлетворяет критериям многогранника, принимаемым многими математиками. Но в нем есть сквозной туннель, т. е. оно имеет форму бублика, образованного плоскими гранями. Считать ли его многогранником? Третий объект состоит из двух многогранников, соединяющихся в вершине, а четвертый — из двух многогранников с общим ребром. Они удовлетворяют нашему критерию, но, согласно большинству определений, многогранниками не являются. У обоих тел есть две внутренние области — если заполнить их водой, то будет два несообщающихся сосуда. А можно привести еще более патологические примеры, идущие вразрез с интуитивным понятием многогранника.
Рис. 2.2. Тела, не являющиеся выпуклыми многогранниками
Пока что расслабимся и отложим хитроумную задачу строгого определения многогранника. Поскольку мы хотим описать историю формулы Эйлера, то можем ограничиться более узким классом многогранников, которые определить проще. Примем очень старомодный взгляд на многогранники, с которым согласились бы и греки, и Эйлер. Хотя явно это никогда не высказывалось, исторически считалось, что многогранник должен быть выпуклым. Выпуклым многогранником называется тело, удовлетворяющее нашему наивному определению (приведенному выше) и дополнительно обладающее тем свойством, что отрезок, соединяющий любые две его точки, целиком расположен внутри него. Таким образом, у выпуклого многогранника не может быть вырезов. С первого взгляда видно, что все тела на рис. 2.1 выпуклые, а тела на рис. 2.2 не выпуклые.