Выбрать главу

Рис. 3.2. Правильные многоугольники с 3, 4, 5, 6, 7 и 8 сторонами

Трехмерным аналогом многоугольника является многогранник. Изучение правильных многогранников дает гораздо более интересные результаты, чем изучение многоугольников. если правильных многоугольников бесконечно много, то единственными правильными многогранниками являются тела, изображенные на рис. 3.1.

А каковы точные критерии правильности многогранника? Как и в случае определения многогранника, нужно внимательно следить за тем, чтобы не включить лишнего и не опустить необходимое. Правильным многогранником, или правильным телом, называется многогранник, удовлетворяющий следующим условиям:

1) многогранник выпуклый;

2) каждая грань является правильным многоугольником;

3) все грани конгруэнтны (одинаковы);

4) в каждой вершине сходится одно и то же число граней.

Каждый из этих критериев необходим. На рис. 3.3 приведены примеры многогранников, не удовлетворяющих ровно одному критерию. Первый удовлетворяет всем условиям, кроме выпуклости. Второй, вытянутый октаэдр, был бы правильным, если бы все грани были равносторонними треугольниками. Футбольный мяч неправильный, потому что его гранями являются правильные пятиугольники и правильные шестиугольники. И последний многогранник состоит из правильных треугольников, но в каждой экваториальной вершине сходятся четыре грани, а в северном и южном полюсах — пять.

Рис. 3.3. Неправильные многогранники. Каждый из них не удовлетворяет какому-то одному из четырех условий правильности

Правильные многогранники встречаются в природе. Самый очевидный пример природных многогранников — кристаллы, и некоторые из них правильны. Например, кристалл хлористого натрия может принимать форму куба, тиасурьмянокислого натрия — форму тетраэдра, а хромокалиевых квасцов — форму октаэдра. Кристалл пирита, который часто называют ложным золотом, может иметь двенадцать пятиугольных граней; однако это не додекаэдр, потому что грани не являются правильными пятиугольниками.

В 1880-х годах Эрнст Геккель, участвовавший в экспедиции на корвете «Челленджер», открыл и зарисовал одноклеточные организмы, названные радиоляриями. Скелеты этих организмов поразительно напоминают правильные многогранники (рис. 3.4).

Рис. 3.4. Радиолярии напоминают правильные тела

Существуют также примеры правильных тел, изготовленных древними людьми. Куб и тетраэдр, относительно простые и распространенные, встречаются во многих рукотворных изделиях на протяжении всей истории человечества. Додекаэдр, датируемый не позднее 500 года до н. э., был обнаружен на раскопках на горе Лоффа близ Падуи в Италии. Древняя игральная кость в форме икосаэдра была найдена в Египте, но ее происхождение неизвестно.

А как насчет октаэдра? Это, пожалуй, последнее из пяти тел, которое стал бы создавать человек. Он не такой простой, как куб или тетраэдр, поэтому никакой встречающийся в быту предмет не имел бы такой формы. Он не такой экзотический, как икосаэдр или додекаэдр, — всего-то две соединенные основаниями пирамиды, поэтому, повстречав его, человек не обратил бы на него внимания. Историк математики Уильям Уотерхаус утверждал, что пока кто-то не обратил внимания на правильность октаэдра, он не представлял собой ничего интересного. Он писал: «Октаэдр стал предметом математического изучения, только когда кто-то придумал ему применение»27.

Обсуждение октаэдра открывает нам глаза. Мы видим, что в развитии теории правильных многогранников есть три важных этапа. Первый — построение самих объектов. Первоначально построение сводилось просто к вылепливанию из глины, но в конечном итоге под процесс должны быть подведены математические основания — построение должно стать геометрическим. Второй этап — абстрактное понятие правильности. Эта идея очевидна только в ретроспективе. Представьте себе, что вы показываете все пять правильных тел случайному прохожему и спрашиваете, что между ними общего. Как говорил Уотерхаус, «открытие того или иного тела было вторичным, важнейшее же открытие — сама идея правильного тела»28. Наконец, третий этап — доказательство того, что существует только пять правильных тел. Должно быть строго математически доказано, что этих красивых объектов пять и только пять. Развитием этой теории — открытием, абстрактной постановкой и доказательством — мы обязаны грекам.