Введение
Философия записана в этой огромной книге, которая постоянно открыта перед нашими глазами (я говорю о Вселенной), но чтобы её понять, надо научиться понимать язык и условные знаки, которыми она написана. Она написана на языке математики, а её буквы — треугольники, круги и другие геометрические фигуры; без них невозможно понять ни слова, без них — тщетное блуждание по темному лабиринту.
Все они прошли мимо нее. Древние греки — такие светила математики, как Пифагор, Теэтет, Платон, Евклид и Архимед, одержимые многогранниками, — прошли мимо. Иоганн Кеплер, великий астроном, так восторгавшийся красотой многогранников, что положил их в основу ранней модели Солнечной системы, прошел мимо. В своем исследовании многогранников математик и философ Рене Декарт находился всего в нескольких логических шагах от ее открытия, но тоже прошел мимо. Все эти и многие другие математики не заметили связи такой простой, что ее можно объяснить любому школьнику, и вместе с тем настолько фундаментальной, что она вошла в плоть и кровь современной математики.
А великий швейцарский математик Леонард Эйлер (1707–1783) мимо не прошел. 14 ноября 1750 г. в письме к своему другу Христиану Гольдбаху (1690–1764), занимавшемуся теорией чисел, Эйлер писал: «Меня поражает, что такое общее свойство стереометрии (геометрии пространственных тел) до сих пор, насколько мне известно, никем не было замечено»3. В этом письме Эйлер описал свое наблюдение, а годом позже представил доказательство. Наблюдение настолько фундаментальное и важное, что теперь оно называется формулой Эйлера для многогранников.
Многогранником называется трехмерный объект наподобие изображенных на рис. I.1. Он состоит из многоугольных граней. Каждая пара соседних граней имеет общий прямолинейный отрезок, называемый ребром, а соседние ребра пересекаются в угловой точке, называемой вершиной. Эйлер заметил, что количества вершин, ребер и граней (V, E, F) всегда связаны простым и элегантным арифметическим соотношением:
V — E + F = 2.
Рис. I.1. Куб и футбольный мяч (усеченный икосаэдр) удовлетворяют формуле Эйлера
Самым известным многогранником, наверное, является куб. Нетрудно посчитать, что у него шесть граней: по одному квадрату сверху и снизу и четыре по бокам. Границы этих квадратов — ребра куба. Всего их насчитывается двенадцать: по четыре сверху и снизу и четыре вертикальных по бокам. Четыре верхних и четыре нижних угла дают нам восемь вершин. Таким образом, для куба имеем V = 8, E = 12, F = 6 и, конечно же,
8 — 12 + 6 = 2,
как и должно быть. Для многогранника на рис. I.1, напоминающего футбольный мяч, подсчет сложнее, но можно убедиться, что он имеет 32 грани (12 пятиугольных и 20 шестиугольных), 90 ребер и 60 вершин. И снова
60 — 90 + 32 = 2.
Но открытие Эйлера — только начало истории. Помимо работы по многогранникам, Эйлер создал новую дисциплину analysis situs, которая сегодня известна под названием топологии. Геометрия изучает жесткие объекты. Геометров интересует измерение таких величин, как площади, углы, объемы и длины. Топология, получившая популярное прозвище «резиновая геометрия», изучает эластичные фигуры. Объект внимания тополога не обязан быть жесткой геометрической фигурой. Топологов интересует связность, наличие дырок и скрученность. Когда клоун скручивает из надувного шара собаку, его топология не меняется, но геометрические тела совершенно различны. Но когда ребенок протыкает воздушный шарик карандашом, он оставляет в нем зияющую дыру, в результате чего топология изменяется. На рис. I.2 мы видим три примера топологических поверхностей: сфера, тор в виде бублика и перекрученная лента Мёбиуса.
Исследователи, занимавшиеся новой наукой, топологией, были очарованы формулой Эйлера и попытались применить ее к топологическим поверхностям. Возник очевидный вопрос: где расположены вершины, ребра и грани на топологической поверхности? Топологи отбросили жесткие ограничения, налагаемые геометрами, и допустили искривленные грани и ребра. На рис. I.3 мы видим разбиение сферы на «прямоугольные» и «треугольные» области. Это разбиение образовано в результате проведения 12 меридианов, сходящихся в полюсах, и 7 параллелей. На этом изображении глобуса имеется 72 криволинейные прямоугольные грани и 24 криволинейные треугольные грани (последние расположены вблизи полюсов) — всего 96 граней. Имеется также 180 ребер и 86 вершин. Стало быть, как и в случае многогранников,