Ограничение в 100 мл на количество жидкости, разрешенное к провозу в авиалайнерах, придумано для того, чтобы не дать злоумышленнику пронести на борт достаточно жидкой взрывчатки, такой как нитроглицерин, чтобы разрушить самолет. Вещество все равно взорвется, конечно, но энергии будет недостаточно, чтобы самолет упал. Однако мысль о том, что в одном литре керосина содержится в десять раз больше энергии, чем в литре нитроглицерина, а в топливных баках самолета этого керосина десятки тысяч литров, действует отрезвляюще.
Но керосин – не взрывчатка, он не умеет спонтанно взрываться. В отличие от нитроглицерина, у него в структуре молекулы нет атомов ни кислорода, ни азота. Это стабильная молекула, которая не распадается так легко. Керосин можно бить, давить, в нем можно даже купаться – он не взорвется. Он мощнее нитроглицерина, но если вы хотите обуздать его, то вам, в отличие от случая с нитроглицерином, придется потрудиться: нужно заставить его реагировать с кислородом. При реакции керосина и кислорода образуется CO2 и водяной пар, но, поскольку скорость реакции ограничена доступом к кислороду, воспламенение можно контролировать.
Мощь керосина и наша способность управляемо сжигать его придают этой жидкости такое важное технологическое значение. Сейчас земная цивилизация сжигает примерно миллиард литров керосина в день, в основном в реактивных двигателях и космических ракетах, но во многих странах он и сегодня используется для освещения и обогрева. В Индии, например, больше 300 млн человек освещают свои дома керосиновыми лампами.
И все же, как бы нас ни грела мысль о том, что мы научились управлять керосином, у него есть темная сторона. Ужасы 11 сентября 2001 г. тому пример. В тот день я был дома перед телевизором и неверяще глядел в экран. По правде говоря, не могу вспомнить, видел ли я, как второй самолет врезался в одну из башен-близнецов, в прямом эфире или в каком-то выпуске новостей, но я был ошеломлен. Я стоял, тупо глядя в телик и пытаясь осмыслить происходящее. Оба здания горели, поступали сообщения и о самолетах, направляемых на цели где-то еще. Думал, хуже уже быть не может. Оказалось, может: первая башня рухнула, сложившись внутрь будто в замедленной съемке, как умеют только гигантские объекты. А потом упала и вторая. Мы уже были готовы к этому, но подействовало все равно оглушающе.
Обрушило башни не что-нибудь, а топливо из самолета. Взрыва не было, ведь керосин стабилен. Согласно докладу ФБР, керосин реагировал с кислородом из ветров, продувавших насквозь поврежденные этажи, в результате чего температура там поднялась до более чем 800 °C. Это не расплавило стальной каркас здания – сталь плавится при температурах выше 1500 °C. Но при 800 °C ее прочность снижается примерно наполовину, и она начала деформироваться. Стоило одному этажу искривиться, и всё здание над ним обрушилось на этаж ниже, заставив его деформироваться, и так далее, как в карточном домике. Всего при падении башен-близнецов погибло более 2700 человек, включая 343 пожарных Нью-Йорка. Эти террористические атаки стали значимым моментом в мировой истории: не только потому, что они повлекли за собой войны и присущие им ужасы, но и потому, что падение башен стало мощным символом хрупкости демократической цивилизации. А активным участником разрушения стал керосин из самолетов.
Так что вы понимаете, почему я говорю, что его вполне могли бы упомянуть во время инструктажа по безопасности. Но он закончился, и никто не сказал ни слова о 150 000 литров керосина на борту, как не упомянул и о его двойственной природе: о том, что, с одной стороны, это обычное прозрачное масло, настолько стабильное, что, если бросить зажженную спичку в топливный бак, оно не загорится; а с другой – в смеси с достаточным количеством кислорода оно становится в десять раз мощнее, чем знаменитая взрывчатка нитроглицерин. Мою соседку Сьюзен всё это, казалось, совсем не беспокоило; она по-прежнему была с головой погружена в свою книгу.