Выбрать главу

Такая неожиданная ситуация складывается в металле: атомный взрыв происходит, а последствий в кристалле никаких! Теоретики это предвидели, экспериментаторы в этом убедились! Говорят так: чистые, совершенные металлы значительно более радиационно стойки, чем, например, диэлектрики.

Вторая ситуация осуществляется, когда осколок движется в ионном кристалле типа NаСl. В таком кристалле, как известно, свободных электронов нет. Все они «приписаны» к определенным ионам, которые размещены в узлах решетки. Кристалл состоит из ионов двух сортов: у ионов одного сорта имеется лишний электрон, а у ионов другого сорта одного электрона недостает по сравнению с тем количеством, которое необходимо для нейтрализации заряда ядра. В кристалле они представлены поровну, и поэтому он электрически нейтрален.

Заряженный осколок ядра, двигаясь в кристалле, взаимодействует с электронами, встречающимися на его пути. В результате анионы, потеряв один электрон, превратятся в нейтральный атом, потеряв два электрона, — в положительно заряженный ион, а катионы, теряя электроны, будут увеличивать свой положительный заряд. В этом процессе вдоль траектории полета осколка в кристалле образуется цилиндрическая зона с повышенной плотностью положительного заряда. Такая зона может взорваться по причине очевидной: одноименные положительные заряды стремятся отделиться друг от друга, разлететься в разные стороны. А это и означает, что произойдет взрыв. Лучше выразимся осторожнее: может произойти.

Можно приблизительно оценить то внутреннее давление, которое «взрывает» цилиндр, заполненный положительными зарядами, расположенными вдоль траектории осколка. Допустим для простоты, что все ионы цилиндра несут один положительный заряд. Значит, они отталкиваются с силой

F e2/a2

(a — межатомное расстояние). Если эту силу отнести к площади a2, приходящейся на один атом в решетке, мы получим интересующую нас оценку давления:

Ре2/a4.

Так как е = 4,8• 10-10 г-1/2 •см3/2/с, a = 3•10-8 см, то Р ≈ 1011 дин/см2. Мы получили давление огромное, безусловно достаточное, чтобы взрыв произошел и трек образовался! Здесь необходимо оправдать осторожность, подчеркнутую в одной из предыдущих фраз. Она обусловлена тем, что не обязательно все ионы вдоль цилиндрического канала окажутся задетыми пролетавшим осколком. В этом случае расстояние между отталкивающимися ионами l будет больше, чем a. По этой причине величина Р, которая ~ 1/l4 , может оказаться малой, недостаточной для взрыва.

У читателя возникает недоумение: ведь осколок и в металле может разбросать электроны, и в металле может возникнуть цилиндрический сгусток положительного заряда, и в металле этот сгусток может взорваться. Оказывается, что образоваться такой цилиндр действительно может, а вот взорваться попросту не успеет, так как электроны, удаленные из цилиндра, из-за их большой подвижности возвратятся в цилиндр, нейтрализуют в нем заряд, а следовательно, устранят причину взрыва. Подвижность электронов в металле несравненно больше, чем в ионном кристалле, именно поэтому в металле взрыв не успеет произойти.

Если в ионном кристалле все происходит так, как мы это себе представили и описали в очерке, на интересующий нас вопрос применительно к ионному кристаллу ответ будет положительным: осколку в ионном кристалле создать трек суждено! В рассмотренных нами предельных ситуациях — металл и ионный кристалл — проблема «суждено ли?» прояснилась. А вот в иных структурах дело обстоит много сложней, и проблема остается проблемой.

ВЗАИМОДЕЙСТВИЕ И ВЗАИМОПРЕВРАЩЕНИЕ ДЕФЕКТОВ

До сих пор в очерках этой главы шла речь о «заселении» кристалла дефектами. В заключение главы поглядим на кристалл с иной точки зрения. Пусть он — не вместилище дефектов, а плацдарм их взаимодействия. Из общих соображений ясно, что не может не быть взаимодействия между дефектами. Кристалл, содержащий дефекты, будет стремиться к уменьшению энергии, связанной с ними. Если по какой-либо причине прямое, решение проблемы, состоящее в том, чтобы избавиться от дефектов, кристаллу недоступно, происходить будет другое: содержащиеся в нем дефекты будут взаимодействовать и превращаться так, чтобы их энергия уменьшилась.