И чтобы охватить измерениями весь 24-часовой период, Суини начинала опыты в разное время суток: на рассвете, через час после рассвета, через два часа после рассвета и так далее, всякий раз наблюдая за клеткой на протяжении 14 часов.
Данные фотосинтетической активности отдельных клеток, полученные в последовательных экспериментах, откладывались на графике, и выводилась суммарная кривая. Она отражала типичный суточный ритм фотосинтетической активности одиночной клетки Gonyaulax, в существовании которого Суини не сомневалась. На рассвете клетка выделяла около двух миллионных долей миллилитра кислорода в час. Через 5 часов это количество увеличивалось почти вдвое, через 14 часов оно снижалось опять до исходного. После достижения этого минимального уровня оно вновь начинало подниматься. Таким образом, эксперимент подтвердил правильную суточную периодичность фотосинтеза у одиночных клеток Gonyaulax.
Теперь можно было переходить к основному эксперименту. Суини вырастила при постоянном ярком освещении новую культуру клеток. И, поместив одиночные клетки из этой культуры в респирометр, вернулась к своим наблюдениям за уровнем поплавка.
Как будет теперь изменяться фотосинтетическая активность? Утратят ли одиночные клетки свой ритм? Будут ли случайные изменения во многих отдельных ритмах взаимно уничтожать, гасить друг друга, так что суммарный эффект популяции не покажет никакой ритмичности.
Огромное количество наблюдений, выполненных Суини, убедительно показало, что клетки в условиях непрерывного освещения ярким светом полностью утрачивают свой ритм. Никакого периодического изменения количества выделенного кислорода не обнаружилось: на рассвете оно составило две миллионных миллилитра в час, как и у клеток, содержавшихся в режиме чередования света и темноты, и больше не увеличивалось, а оставалось на этом уровне в течение 16 и более часов.
Так был получен ответ на первый вопрос Суини. Популяция клеток Gonyaulax polyedra, содержащаяся в условиях непрерывного освещения ярким светом, теряет ритм фотосинтеза, и это исчезновение видимых ритмов отражает не потерю синхронности, а потерю ритма каждой клеткой в отдельности.
15. Таинственные регуляторы времени
Фрэнк А. Браун, профессор биологии Северо-западного университета, занимает позицию, диаметрально противоположную позиции большинства ученых, изучающих биологические ритмы.
После получения степени доктора зоологических наук в Гарвардском университете Браун работал некоторое время в научно-исследовательском биологическом центре на Бермудских островах. Там он впервые непосредственно наблюдал два совершенно удивительных примера биологических ритмов: появление с точной месячной периодичностью стай бермудской креветки и скоплений атлантического светящегося червя. Самым замечательным в этих явлениях была их приуроченность к определенным фазам Луны. Таким образом, сама природа этих ритмов существенно отличалась от суточных или околосуточных ритмов, которые владели мыслями большинства исследователей.
После пребывания на Бермудских островах Браун еще несколько лет занимался изучением эндокринной системы ракообразных, но мысли о загадочности биологических ритмов не оставляли его. В конце концов он целиком переключился на исследование зависимости биологических ритмов от периодических изменений геофизических параметров.
Целью самого первого из поставленных им экспериментов было выявление зависимости ритмов у животных от температуры. Результаты аналогичных исследований Дж. Уэлша из Гарвардского университета и О. Парка из Университета штата Иллинойс вызывали у Брауна большие сомнения. По данным этих исследователей, свойственные организмам (различным ракообразным и насекомым) ритмы сохраняются при переносе животных из естественной внешней среды в условия постоянной температуры.
Браун предложил своей сотруднице М. Уэбб проверить результаты Уэлша и Парка. Животным, которое они избрали для экспериментов, был маленький манящий краб Uca. Тысячи особей этого краба повсюду копошатся на прибрежных отмелях, издавая звук, напоминающий шелест бумаги. В обычных условиях Uca обнаруживает регулярное ритмическое изменение своей окраски. Днем он темнеет, а ночью становится светлым. Степень изменения его окраски можно измерить обычными лабораторными методами.
Браун и Уэбб начали с гипотезы, что крабы должны подчиняться правилу Вант-Гоффа, согласно которому при повышении температуры скорость химической реакции непременно увеличивается, а при снижении — замедляется. Если это так, то частота ритмического изменения окраски крабов должна удваиваться, утраиваться и т. д. при повышении температуры на каждые 10 °C или соответственно снижаться при аналогичном снижении температуры.