Выбрать главу

Не позже 1895 г., т. е. за два года до публикации Бурали-Форти, Кантор сам столкнулся с так называемым парадоксом Бурали-Форти, касающимся множества всех порядковых чисел, и в 1896 г. сообщил о нем Гильберту[23]. Далее, в 1899 г. он пишет Дедекинду также о других противоречивых системах, например, о совокупности всех мощностей или всего мыслимого, и называет их «неконсистентными» (или «абсолютно бесконечными») системами. В противоположность этому, система может рассматриваться как множество, «если совокупность элементов некоторого разнообразия непротиворечивым образом мыслима как совместно существующая»[24]. Парадокс, возникающий из множества всех порядковых чисел, по мнению Кантора как раз и означает, что существуют «некоторые разнообразия, не мыслимые также в виде однообразия». Опираясь на эти не особенно ясные понятия, он утверждает далее, что эквивалентные разнообразия одновременно являются множествами или неконсистентны, и что подразнообразие множества есть снова множество. Дальше он рассуждает следующим образом. Пусть W − система всех порядковых чисел, V − разнообразие, не имеющее в качестве мощности никакого алефа; тогда легко видеть, что «вся система W проектируется в разнообразие V» т. е. V должно содержать подразнообразие, эквивалентное W; и если, таким образом, V вообще имеет определенную мощность, то она должна быть алефом. Как мало это «доказательство» удовлетворяло его самого, видно из того, что он вскоре обратился с просьбой к Дедекинду дать с помощью его теории цепей «прямое» доказательство сравнимости. Таким образом, с 1884 года до смерти Кантора нерешенная проблема континуума упорно его беспокоила, временами вызывая у него даже сомнение, состоятельна ли теория множеств как научное построение в ее нынешнем виде.

В перегоняющих друг друга письмах, относящихся к периоду успешной деятельности Кантора (1899 г.), содержатся и другие вещи, заслуживающие упоминания.

Так, 29 августа Дедекинд сообщает другу доказательство эквивалентности с помощью своей теории цепей, на возможность которого он уже весной 1897 г. указывал Ф. Берштейну[25]. Далее, Кантор формулирует известную альтернативу относительно возможных отношений эквивалентности между двумя множествами M и N: каждое из них либо эквивалентно некоторому подмножеству другого, либо не эквивалентно никакому из них; таким образом, имеется четыре мыслимых комбинации (одна из которых, соответствующая «несравнимости», была позже исключена в силу теоремы о полной упорядоченности). Этот метод, сейчас для нас почти самоочевидный, до тех пор не встречался в работах Кантора; по рассказу Шенфлиса[26], письмо, в котором Кантор сообщил его в Геттинген, было там воспринято как откровение и переходило из рук в руки. Наконец, в тех же письмах Кантора утверждения о существовании множеств (т. е. консистентных разнообразий) с кардинальными числами объявляются аксиомами элементарной, соответственно, расширенной арифметики; это вполне соответствует духу впоследствии построенной Расселом теории “individuals” («индивидуумов»).

В том же 1897 г., когда вышла последняя работа Кантора, в Цюрихе состоялся первый «Международный математический конгресс». Он встретил на конгрессе единодушное признание; наряду с секционным сообщением Адамара, использовавшего понятия теории множеств как уже известные и необходимые орудия, доклад Гурвица на первом пленарном заседании «О развитии общей теории аналитических функций в новейшее время» особенно ярко продемонстрировал, насколько плодотворными оказались для теории функций идеи Кантора и среди них столь оспаривавшиеся трансфинитные числа. Надо отметить, что три уже тогда ведущих исследователя, Гильберт, Гурвиц и Минковский, состоявшие между собой в дружбе, первые в странах немецкого языка поняли и пытались разъяснить оригинальность идей Кантора и значение его теории множеств; было это еще «в то время, когда в задававших тогда тон математических кругах самое имя Кантора было под запретом, а в его трансфинитных числах видели всего лишь вредные порождения фантазии»[27]. Не только значение этих ученых, но также их особая связь со строгими методами теории чисел способствовали разрушению многих предубеждений против теоретико-множественных построений.

вернуться

23

В письме Юнгу от 9 марта 1907 г. Кантор резко нападает на известные статьи Бурали-Форти в Rendiconti Palermo, заявляя, что тот даже не усвоил понятия вполне упорядоченного множества (см. Mathem. Gazette, №14, 101, 1929)

вернуться

24

Вскоре затем Кантор уточняет употребление слова «разнообразие» в этой связи, разъясняя, что он имеет в виду «разнообразия не связанных вещей, т. е. такие разнообразия, что удаление из них произвольного элемента или многих элементов никак не влияет на существование остальных». (Отметим, как близко Кантор подошел здесь к запрещению так называемых непредикативных определений, тем самым неосознанно подвергая критике также понятие степени множества, основное для его построения теории множеств)

вернуться

25

Доказательство Шредера (содержавшее пробел) было доложено осенью 1896 г. на Франкфуртском собрании естествоиспытателей; доказательство Бернштейна, найденное им зимой 1896/97 г., было доложено в 1897 г. на семинаре Кантора. Доказательство Дедекинда (не опубликованное) по существу совпадает с более поздним доказательством Цермело (Math. Ann., 65, 271, 1908)

вернуться

26

Jahresber. d. D. Mathematikervereinigung, 101 и далее, 1922

вернуться

27

Ср. речь Гильберта, посвященную памяти Минковского (Göttinger Nachrichten, 1909; Собрание сочинений Минковского, т.1), где цитируется также меткое замечание из доклада Минковского об актуально-бесконечном в природе. В обоих докладах упоминается оппозиция Кронеккера по отношению к идеям Кантора