Выбрать главу

Мы упомянули выше убеждение Кантона, что математическим понятиям, наряду с имманентной реальностью, только и касающейся математика, сама собою присуща также транссубъективная реальность; с этим теснейшим образом связано представление Кантора, которое можно в несколько заостренной форме выразить словами: математик не изобретает предметы своей науки, но открывает их. Это воззрение, выраженное уже в третьем тезисе его диссертации, снова подчеркивается в конце его творчества, когда он предпосылает завершающему изложению [18] эпиграфы:

“Hypothesis non fingo” («Гипотез я не выдумываю») и “Neque enim leges intellectui aut rebus datum arbitrium nostrum, sed tanquam scribae fideles ab ipsius naturae voce latas et prolatas excipimus et describimus” («Ибо мы не даем законов разуму и вещам по нашему произволу, но, словно верные писцы, схватываем и записываем их с голоса самой природы»). Вообще говоря, для творческой деятельности математика безразлично, рассматривает ли он свои понятия как платоновские идеи, как произвольные создания рассудка или примиряя эти точки зрения (Гессенберг), как создания независимо творящего разума, замечательно, однако, что именно в проблематике теории множеств, касающейся несчетного, эти различия в мировоззрении могут играть иногда существенную роль[40]. То обстоятельство, что для Кантора (и, очевидным образом, также для Больцано) понятия математики обладали существованием, независимым от их открытия и вообще от нашего мышления, а в некотором смысле ему предшествующим, весьма существенно для понимания подхода Кантора к занимавшим его проблемам (например, к проблеме континуума). Это убеждение поддерживало также упрямство, с которым он в течение двух десятилетий почти в одиночестве отстаивал свои идеи И следующее ниже место из письма Миттаг-Лефлеру в начале 1884 г. не только свидетельствует о скромности, но скорее должно рассматриваться как выражение этой метафизической точки зрения: «..что касается остального (кроме стиля и сжатости изложения), то это не моя заслуга: по отношению к содержанию моих работ я всего лишь секретарь или посредник». Конечно, нельзя не заметить известной неувязки между двумя тезисами Кантора − с одной стороны, о «свободе» математики и, с другой стороны, о заданном характере математических объектов.

Далеко не так отчетливо известны нам взгляды и интересы Кантора в области естествознания и, в особенности, физики. В противоположность «свободной математике», он рассматривает физику как «метафизическую науку»[41], и для нее он признает оправданными и необходимыми те самые оковы, от которых столь решительно освобождает математику; причиной этого является стимулирующая естественную науку трансиентная реальность. Он высказывается, впрочем, не в очень тесной связи с предыдущим ([13], ч. 5), против точки зрения «знаменитого физика» (имеется в виду, конечно, Кирхгоф, «Механика» которого вышла в 1874 г.), согласно которой физика есть «описание природы»; по его мнению, это представление «лишено и свободного веяния математической мысли, и силы объяснения и обоснования явлений природы». О естественно-научных взглядах Кантора свидетельствует еще высказанная им в конце работы [16], весьма далекая от нынешних представлений атомистическая гипотеза[42], согласно которой атомы материи составляют множество первой мощности, атомы же эфира − второй[43]. Известно также о его занятиях «естественным учением об организмах..., к которому неприменимы имеющиеся механические принципы...», и для которого ему нужны были новые, в частности, теоретико-множественные средства (письмо Миттаг-Лефлеру от 22 сентября 1884 г.; ср. также [13], ч. 5); трудно уяснить себе, какие методы и цели при этом имелись в виду, но можно предположить, что главную роль должна была здесь играть (до сих пор едва начатая) теория многократно упорядоченных множеств. Наконец, заслуживает упоминания рассмотрение в [13], ч. З, отношений между арифметическим пространством и тем пространством, которое мы кладем в основу описания явлений действительности; обычно предполагаемое соответствие между этими понятиями «само по себе произвольно» и обеспечивается лишь требованием отобразимости (а не только, например, условием непрерывной подвижности).

вернуться

40

Ср. мою книгу и Einleitung in die Mengenlehre («Введение в теорию множеств») (3-е изд., Берлин, 1928), стр. 325-322

вернуться

41

Впрочем, слово «метафизика» часто применяется у Кантора (как и у Гaycca) не в принятом ныне смысле, а вслед за французским словоупотреблением приблизительно в смысле «философской критики» (некоторой науки); ср. заключение работы

вернуться

42

Ср. также восходящие к «Сообщениям» Кантора ссылки в Ztschr. F. Philos. u. philos. Kritik, N. F., 88, стр. 192 и далее (1886); там же, стр. 229. С этими физическими взглядами следует сравнить, наряду с Коши, на которого Кантор ссылается в “Über die verschiedenen Standpunkte in Besug auf das aktuelle Unendliede” и в “Mitteilungen zur Lehre vom Transfiniten”, также объяснение природы в книге Р. Грассмана “Die Lebenslehre oder Biologie” [«Учение о жизни или биология»]. (Штеттин, 1882/83)

вернуться

43

Приложения теории точечных множеств к математической физике, намеченные в этом месте и, видимо, очень близкие сердцу Кантона, на нынешней стадии развития физики представляются бесперспективными; однако, физические приложения иного рода действительно имеются. В [13], ч. 5, Кантор особенно подчеркивает свою враждебность обычной атомистике