Коллега Б. Не делай поспешных выводов, наберись терпения. Слушай, что говорит лектор...
«И, как часто бывает в науке, одни и те же факты, одни и те же закономерности под другим углом зрения обнаруживают признаки новой взаимосвязи. В этом нет ничего удивительного. Известны случаи, когда даже сами авторы, открывшие то или иное явление, затрудняются указать на главное следствие своего открытия.
Достаточно вспомнить в связи с этим имена великого изобретателя Эдисона и великого физика Резерфорда. Первый сам открыл эмиссию электронов с накаленной вольфрамовой нити в вакууме, но упорно отрицал практические возможности ее использования. Теперь же все знают, что в мире нет ни одной радиолампы, которая не основана именно на этом явлении. Второй впервые в мире осуществил ядерную реакцию, но до конца своих дней упорно отрицал практическую возможность получения атомной энергии. Даже в 1933 г., т. е. почти накануне открытия цепной реакции, на годичном собрании Лондонского королевского общества он говорил, что «всякий, кто высказывается за возможность получения внутриатомной энергии в больших масштабах, говорит чистейший вздор».
Как глубоко ошибся этот великий ученый в своих предсказаниях, теперь известно всем.
В какой связи нас интересует сейчас колебательный контур? Почему вводный раздел энергетической инверсии мы начинаем с рассмотрения маятника, который был известен еще древним? Ответ на этот вопрос очень простой: в колебательном контуре инверсия энергии в количественном отношении многократно превосходит потери энергии за тот же период обращения.
309
В том случае, когда внутренние потери колебательного контура компенсируются внешним источником энергии, колебания становятся, как известно, незатухающими (радиотехника, часовой механизм и т. п.).
Вывод о том, что в колебательном контуре инверсируемая (обращаемая) энергия превосходит потери за тот же период обращения, имеет глубокое принципиальное и исключительно важное значение. В самом общем виде можно сказать, что потери энергии за один период колебаний составляют 1/n долю запасенной в контуре энергии, где n — число периодов колебания.
В результате огромного труда исследователей дальнейшее развитие этой мысли привело к созданию такой колебательной системы, в которой тепловая энергия среды или тела в процессе колебания стала переходить в электрическую форму энергии, а последняя вновь в тепловую форму энергии. Именно это и привело к возможности управления перераспределением энергии окружающей среды как в сторону некоторого повышения, так и в сторону понижения теплового потенциала. Именно в теплоэлектрическом колебательном контуре идея концентрации и деконцентрации энергии окружающей среды нашла свое первое воплощение».
Коллега А. Говоря от имени лектора, ты хочешь сказать, что уже достигнута возможность преобразования менее организованной, т. е. хаотической, формы энергии в более организованную форму?
Коллега Б. И да, и нет. С точки зрения теории вероятности при более низкой температуре, как ты сам мне доказывал, существует наибольший беспорядок. С этой точки зрения повышение температуры есть переход к менее вероятному состоянию. Однако последующее преобразование тепловой энергии в электрическую форму энергии с упорядоченным движением электронов означает переход тепловой хаотической энергии молекул в еще более высокоорганизованную форму энергии.
310
Коллега А. Конечно, если бы удалось найти способ прямого преобразования тепловой энергии в электрическую с соотношением 1:1, то, возможно, возникли бы условия для осуществления идеи о колебательном контуре «тепло — электричество — тепло». Но пока таких условий нет. Если же исходить из термодинамических законов, то тепловая форма энергии не допускает стопроцентного преобразования ее в другие формы. Любая другая форма энергии (например, электрическая энергия на омическом сопротивлении) может стопроцентно переходить в тепловую форму энергии, однако обратный процесс, т. е. преобразование тепловой формы энергии в электрическую, согласно законам термодинамики принципиально невозможен. Имеющееся соотношение -Цк—- является пределом даже для идеального цикла.
Коллега Б. Тут я с тобой вновь решительно не согласен. И не потому, что это соотношение неверно, а потому, что оно не учитывает всех возможных процессов.
Коллега А. Попытайся доказать, что тепло окружающей среды может прямо и стопроцентно переходить в электрическую или какую-либо иную форму энергии.
Коллега Б. Доказать это можно очень просто. Я мог бы сослаться на эффект Гельмгольцевой теплоты в аккумуляторах и некоторых гальванических элементах, например в элементе Бугарского, но я сошлюсь прежде всего на опыты Ленца.