Такие факты представляются в изобилии при изучении коллоидов. Будем наблюдать, например, хлопья, получающиеся в мыльной воде, если к ней подсыпать соли. Издали очертания хлопьев могут показаться вполне оцределенными, но, если мы взглянем на них поближе, то всякая определенность исчезает. Глаз не сумеет провести касательную в какой-нибудь точке; прямую, которую мы при первом взгляде были бы готовы назвать касательной, при большем напряжении внимания с таким же правом можно считать перпендикуляром или секущей по отношению к контуру. Если взять лупу или микроскоп, то неуверенность только увеличится, и чем большее увеличение мы возьмем, тем больше увидим новых извивов; у нас не будет того определенного, успокаивающего впечатления, какое производит, например, стальной гладко полированный шарик. И если шарик может служить для нас моделью классической непрерывности, то хлопья мыла будут служить, с полным логическим основанием, иллюстрацией более общего понятия о непрерывных функциях, не имеющих производных.
Нужно заметить, что неопределенность при определении положения касательной плоскости к некоторому контуру не совсем того порядка, как неопределенность, с которой мы встретились бы, если бы вздумали провести, например, касательную в какой-либо точке береговой линии Бретани, пользуясь для этого картой того или другого масштаба. Сообразно с масштабом, положение касательной менялось бы, по в каждой точке можно провести только одну касательную. И это потому, что карта ость лишь условный чертеж, где уже по построению всякая линия имеет касательную. Напротив, для наших хлопьев характерно (как и для берега, если вместо того, чтобы изучать его очертания по карте, мы рассматривали бы его непосредственно с более или менее далекого расстояния) именно то, что, в каком бы то ни было масштабе, мы подозреваем в структуре такие детали, которые абсолютно не позволяют придать дааса-тельпой какого-либо определенного положения.
Равным образом мы остаемся в области реальности, доступной опыту, когда, приближая глаз к микроскопу, видим броуновское движение, волнующее каждую частицу эмульсин, плавающую в жидкости. Для того чтобы провести касательную к ее траектории, мы должны были бы найти, хотя приблизительно, предельное положение прямой, соединяющей два положения частицы, взятые в два момента времени, очень близкие друг к другу. Но, поскольку позволяет судить опыт, это направление меняется положительно сумасшедшим образом по мере того, как мы уменьшаем промежуток времени, разделяющий эти моменты. Таким образом, у непредубежденного наблюдателя в процессе наблюдения слагается мысль, что здесь перед ним функция, не имеющая производной, а не кривая, имеющая касательную.
Я говорил пока о контуре или о кривой, так как обыкновенно пользуются кривыми, чтобы на них выяснить понятие о непрерывности. Не было бы логически равноценным, а с физической точки зрения даже и более общим, рассматривать изменение от точки к точке какого-нибудь другого свойства материи, например плотности или цвета. И в этом случае мы встретились бы с совершенно подобными сложностями.
По классическому представлению, мы можем разложить всякий предмет на столь мелкие части, что они будут практически однородными. Другими словами, считается, что по мере постепенного сжатия контура, различия в свойствах материи внутри этого контура делаются все менее и менее резкими.
Однако, если такое представление и не опровергается опытом, то все же можно сказать, оно крайне редко подтверждается наблюдаемыми фактами. Наш глаз тщетно будет искать практически однородную область, хотя бы и чрезвычайно малую, на поверхности руки, письменного стола, деревьев или почвы. И если бы нам показалось возможным ограничить достаточно однородную площадку, положим, на поверхности древесного ствола, то достаточно подойти поближе, чтобы разглядеть на коре дерева предполагавшиеся детали и заподозрить существование еще новых более мелких деталей. Если наш глаз не в силах уже различить их, мы прибегаем к лупе или микроскопу; и тогда, наблюдая при возрастающем увеличении выбранные нами участки, мы открываем на них все новые и новые детали, и, наконец, дойдя до предела возможного увеличения, мы видим изображение дифференцированным значительно больше, чем то, которое мы наблюдали невооруженным глазом. Живая клетка, например, совсем не однородна: в ней можно различить сложную структуру, состоящую из нитей и зерен, плавающих в неоднородной плазме; глаз угадывает там еще какие-то особенности, которые он бессилен воспринять более определенно. Таким образом, кусочек материи, который, как мы рассчитывали сначала, мог бы оказаться однородным, на самом деле оказывается «бесконечно губчатого» строения, и для нас не остается никакой надежды отыскать в конце концов «однородный» или, по крайней мере, такой кусочек вещества, свойства которого изменялись бы от точки к точке в правильной последовательности.