Выбрать главу

Жизнь на ощупь

Органы чувств, или рецепторы, как называют их ученые, должны сообщать своим владельцам обо всем, что творится в мире. Работа по приему, анализу, систематизации информации, отбору самой важнейшей и ее хранению является одним из главных и наиболее трудоемких видов мозговой деятельности. В этом отношении подданные Посейдона практически ничем не отличаются от других животных.

Другое дело — работа самих анализаторов. Обитатели океана, особенно живущие в толще воды, существуют в обедненной среде, в зоне информационного вакуума, где подолгу ничего не происходит, а значит, нечего и анализировать. В этом случае задача анализаторов упрощается: здесь трудно проморгать появление нового объекта или возникновение нового явления. Анализ полученной информации направлен на опознание каждого объекта или явления, установление его местоположения в пространстве и определение расстояния до этого объекта. Совершенно очевидно, что размер зоны действия анализаторов находится в соответствии с величиной животного.

Несмотря на значительные различия в характере поставляемой информации, принцип работы анализаторных систем имеет между собой много общего и сходен с характером их деятельности у наземных животных. Однако жизнь в толще воды вносит свои коррективы. Обитатели океана оснащены как самыми обычными анализаторами, встречающимися и у сухопутных животных, так и совершенно неожиданными, немыслимыми в воздушной среде.

Луч света в темном царстве

Светочувствительные органы, видимо, были самыми первыми рецепторами живых существ. Это не случайно. Жизнь на Земле тесно связана со светом. Сухопутные животные значительную часть интересующей их информации получают с помощью зрения. Глаза способны давать более детальную информацию, чем любые другие органы чувств.

Нет необходимости рассказывать о принципе устройства глаз. Они общие для всех животных. Уместнее остановиться на свойствах морской воды как оптической среды и на особенностях зрительного аппарата, возникшего под ее воздействием. Свет распространяется со скоростью 300 000 километров в секунду. Это значит, что зрительная информация практически мгновенно достигает глаз. При всем многообразии информации, которую черпает мозг из показаний зрительных рецепторов, сами рецепторные клетки способны воспринимать лишь разницу в интенсивности достигших их световых лучей и только у части животных позволяют определять длину световых волн и плоскость их поляризации.

Светочувствительные рецепторы есть у большинства животных. Ими владеют даже эвглены — одноклеточные зеленые водоросли. Настоящие глаза впервые появились у червей, причем сразу в двух сильно отличающихся вариантах: фасеточные, состоящие из множества простых глазков, и камерные, то есть того же типа, что и глаза человека. Наиболее совершенными фасеточными глазами обладают высшие ракообразные. Камерные глаза — непременный атрибут животных с развитым мозгом.

Фоторецепторы воспринимают свет с помощью фоточувствительных пигментов. Если нужно лишь уловить свет и оценить его интенсивность, достаточно одного пигмента. Наибольшее распространение получили два вещества. Красный палочковый пигмент родопсин характерен для сухопутных животных, человека и морских рыб. Выбор обитателей океана объясняется большей чувствительностью родопсина к световым лучам сине-зеленой части спектра, то есть к световым волнам длиной 470–480 нанометров, которые глубже всего проникают в толщу морской воды. Чувствительность пурпурного пигмента порфиропсина сдвинута в красную сторону, то есть в область более длинных волн. Им пользуются рыбы, живущие в менее прозрачной воде пресноводных водоемов, куда плохо проникают световые волны сине-зеленой части спектра. В рецепторных клетках глаз некоторых морских рыб одновременно присутствуют и родопсин и порфиропсин.

В камерном глазу позвоночных встречаются два типа светочувствительных клеток: палочки, предназначенные для сумеречного зрения, и колбочки, обеспечивающие цветное восприятие Палочки обладают высокой чувствительностью к свету. Если глаз животного привык к темноте, палочка способна возбудиться при воздействии всего 1 фотона. Это не значит, что животное заметит этот свет. Дело в том, что множество палочек сначала посылает свою информацию какой-то определенной биполярной клетке. В свою очередь, несколько биполярных клеток передают информацию определенной ганглиозной клетке, и по ее главному отростку — аксону информация поступает в мозг.