Выбрать главу

Выводы по второй главе:

Обнаружена закономерность в случайном процессе с помощью спектрального анализа. Существующую закономерность можно представить в виде спектра гармоник. На каждом периоде гармоники возможно рассчитать вероятность возникновения события. Вероятность возникновения события рассчитывается по синусным и косинусным составляющим.

3. МАТЕМАТИЧЕСКОЕ ОБОСНОВАНИЕ ПЛЯС РЯДОВ

Пляс ряды предназначены для анализа событий, в которых известно лишь время наступления этого события и ничего не известно о поведении функции между наступлениями события (например авария оборудования). Пляс ряды доказываются на основании рядов Фурье.

Пусть f(t) функция состояния некоторого события на рисунке 1. (в частном случае, если площадь под функцией равняется 1, то функция состояния является плотностью вероятности случайного события ).

Рисунок 1. – Функция состояния случайного процесса

Общее число событий N стремится к бесконечности. За период времени ∆t1 происходит А1 количество событий, за период времени ∆t2 происходит А2 количество событий и так далее.

Общее число интервалов m. Каждый интервал времени ∆t бесконечно малый и является интервалом дискретизации для преобразования Фурье.

При стремлении количества событий к бесконечности Пляс ряды автоматически трансформируются в ряды Фурье, которые уже доказаны.

Формулы данных рядов – формулы 1,2.

(1)

(2)

Где v – номер гармоники, f- опорная частота дискретизации, m - число интервалов дискретизации, t – текущее время. Fx(v) – синусная составляющая прямого преобразования Фурье и Пляс рядов, Fу(v) – косинусная составляющая прямого преобразования Фурье и Пляс рядов, Aq – для рядов Фурье – значение функции, а для Пляс рядов количество событий.

Выше приведенное преобразование есть Пляс преобразованием и работает даже в тех случаях, когда не все интервалы времени заполнены событиями, каждому событию для Пляс радов приписывается единица (если в момент времени t случилось одно событие, то Aq=1).

.2. Проверим на примере роботу прямого и обратного Пляс преобразования.

Пусть есть функция состояния случайного процесса

(3)

График данной функции представлен на рисунке 2.

Рисунок 2. – Функция состояния случайного процесса.

Где функция позитивное событие позитивное, где функция негативна, событие противоположно, то есть негативное значение для прямого Пляс преобразования.

На основании данной функции можно составить поток событий (аналогично тому как по плотности вероятности получают поток случайных событий).

Позитивный поток событий:

Негативный поток событий:

Поскольку данная функция состояния периодическая (период 40), то можно продолжить поток событий и довести количество событий как позитивных, так и негативных до 90(для увеличения точности расчета).

Таблица 1. - Позитивный поток событий:

Таблица 2. - Негативный поток событий:

Прямое Пляс преобразование для косинусных составляющих:

(3.4)

Для синусных составляющих:

(3.5)

Амплитудно переодическая функция вычисляется по формуле

(3.6)

График амплитудно - периодической функции:

Рисунок 3. – Амплитудно – периодическая функция

Как видно из графика, мы отыскали искомую гармонику (с периодом 20 и 40).

Используя обратное Пляс преобразование по формуле:

(3.7)

Получим искомую функцию:

Рисунок 4. – Полученная функция состояния.

Построим на одном графике исходную функцию состояния и полученную с помощью Пляс преобразования:

Рисунок 5. – Искомая и заданная функция

Сплошной – график полученной функции. Как видно из графика функции практически идентичные. 100 % точность не достигается из за того что высокая погрешность при нахождении потока событий 10 первых позитивных и 10 первых негативных событий.

.2. Пример прогноза аварий по гармоникам с небольшим периодом.

Обрабатываем время наступления события от начала отсчета

Таблица 3. - Данная реализация случайного процесса выхода из строя микропроцессорной техники Агрегата Продольного Резания АПР3, моталка. Цех холодной прокатки ММК им Иллича. Выход из строя происходит в результате неточной настройки контура возбуждения (в переходных процессах ток возбуждения закидывает ниже минимально допустимого. )

Таблица 3. – Время наступления аварий.

1

2

№ события

J Время наступления события от начала отсчета(100 единицы соответствует 1 часу).

1

2100

2

4500

3

6900

4

14900

5

16400

6

18200

7

20600

8

23000

Производим прогноз восьмого события, используя для расчета первые 7 событий.

Необходимо произвести спектральный анализ закономерности на всех периодах гармоники

Косинусная квадратурная составляющая для периода гармоники Tj рассчитывается по формуле:

                              (8)

Где Ji – время между началом отсчета и і – тым событием. N- количество событий.

Синусная квадратурная составляющая для периода гармоники Tj рассчитывается по формуле:

                                    (9)

Амплитуду закономерности для периода Tj рассчитаем по формуле:

                                    (10)

Рисунок 6. – Амплитудный – периодическая зависимость для гармоники.

Находим количество достижения максимума амплитудный – периодической функции по формуле (расчет проводится в пакете MATHCAD)

(11)

Ac=86

Находим периоды при которых амплитудно- периодическая функция достигает максимума:

(12)

На основании законов обратного Пляс преобразовывания и полученной спектральной характеристики возможное построение функции состояния случайного процесса в зависимости от времени.