Выбрать главу

Моя общественная активность была всегда несколько рискованной для меня, а с течением времени она стала просто опасной. Особенно остро я почувствовал это, начиная с 1978 года. А теперь острота этого ощущения всё нарастает. Но об этом я, быть может, расскажу несколько позже.

О моих исследованиях в топологии

Одновременно с написанием книжки «Непрерывные группы» я занимался и другими проблемами. Впрочем, для этого были более существенные причины. Об этом я расскажу, пожалуй, потом.

Так, в 1936 году мною была получена гомотопическая классификация отображений сферы Sn+1 на сферу Sn при n>2. Как я уже говорил, оказалось, что число классов отображений равно 2. Тогда же я занимался отображениями сферы Sn+2 на сферу Sn при n>2, но, сделав ошибку в вычислении, получил неверный результат, установив, что имеется лишь один класс отображений. В действительности же имеются два класса отображений, это я выяснил много лет спустя, когда дал полное изложение этой работы[34].

Окончив книжку, я все свои усилия направил на гомотопическую классификацию отображений одного пространства A на другое пространство B. В первую очередь надо было дать классификацию отображений сферы Sn+k на сферу Sn. Усилия, направленные на решение последней задачи, привели меня к изучению гладких многообразий. Хочу остановиться на этом подробнее, так как в этой области я получил важные результаты.

Два отображения f и g пространства A в пространство B называются гомотопными, если, непрерывно меняя отображение f, можно сделать его совпадающим с g. Проблема гомотопической классификации отображений стала центральной проблемой топологии на много лет. Она оказалась очень трудной даже для простейшего случая — для случая сфер. Если пространство B есть сфера Sn, то задачу можно локализовать следующим образом. Выберем на сфере Sn произвольную точку p и обозначим через H произвольно малую шаровую окрестность этой точки. Оказывается, что если два отображения f и g совпадают на H, то они гомотопны между собой. Говоря, что отображения f и g совпадают на H, я имею в виду следующее: f–1(H), т. е. полный прообраз шара H при отображении f, совпадает с полным прообразом шара H при отображении g. То есть мы имеем равенство f–1(H) = g–1(H) = C. На множестве C отображения f и g совпадают между собой, т. е. при xÎC мы имеем f(x) = g(x). Это очень простое соображение легло в основу всех моих исследований.

Обозначим через q точку, противоположную точке p. Непрерывно растягивая шарик H вдоль его радиусов и одновременно сжимая пространство Sn\H в точку q, мы получим непрерывную деформацию всей сферы Sn. Применяя эту деформацию к отображениям f и g, мы убедимся, что в конце этой деформации отображения f и g перейдут в совпадающие. Таким образом, они гомотопны между собой.

В случае если пространство A — гладкое многообразие, локализацию следующим образом можно сделать дифференциальной, т. е. перейти к дифференциалам. Прежде всего, очевидно, что всякое непрерывное отображение гладкого многообразия A на сферу Sn можно аппроксимировать гладким отображением. Таким образом, достаточно рассматривать только гладкие отображения многообразия A на сферу Sn. Предположим далее, что размерность многообразия A больше или равна размерности сферы Sn. Тогда оказывается, что точку p на сфере Sn можно выбрать таким образом, чтобы функциональный определитель отображения f в каждой точке xÎf–1(p)=Mk многообразия A, переходящей в точку p, был максимальным, т. е. равнялся n. Тогда полный прообраз точки p в пространстве A представляет собой гладкое многообразие размерности k, равной разности размерностей A и Sn. В точке p на сфере Sn выберем n ортогональных между собой единичных векторов u1…, un. Обозначим через vi(x) вектор пространства A, ортогональный к многообразию Mk в точке x и переходящий в вектор ui.

вернуться

34

См. работу «Гомотопическая классификация отображений» (n+2) — мерной сферы в n-мерную. Опубликовано в кн.: Понтрягин Л. С. Избранные научные труды. Т. I. — М.: Наука, 1988.