Вы погодите смеяться — одна минута идиотского смеха сокращает жизнь на одну минуту! Помните, мы говорили про два способа переноса электричества? Про то, как в металлах реализуется первый из них — через движение электронов — мы уже пару слов сказали. Теперь скажем пару слов про второй из них, через движение зарядовых разбалансов. У этого второго способа есть принципиальные отличия от первого. Электроны имеют какую-никакую массу, поэтому перенос электричества в металлах через движение электронов является процессом инерционным и, как мы видели выше, довольно медленным. При движении же зарядовых разбалансов не происходит переноса вещества, поэтому такой процесс переноса электричества является безынерционным, и он может происходить с сумасшедшей скоростью, достигающей скорости света. Вы спросите: где такое видано? Здрасьте-пожалста! Да чуть не на каждом шагу! Вот двухпроводная линия, с длиной в 10 км, к дальним контактам которой присоединён конденсатор. После замыкания рубильника, подключающего источник постоянного напряжения к ближним контактам этой линии — как быстро появится напряжение на конденсаторе? Правильно: оно появится с задержкой, равной частному от деления длины линии, 10 км, на скорость света, т.е. через 33 микросекунды. Ясно, что такое молниеносное появление напряжения на конденсаторе обеспечивается вовсе не притоком электронов на отрицательную обкладку и оттоком их от положительной обкладки — поскольку электроны продвигаются с черепашьей скоростью. Хуже того: задержка на молниеносное появление напряжения не зависит от ёмкости конденсатора! А ведь если здесь дело было бы в притоке-оттоке электронов, то появление того же самого напряжения на конденсаторе большей ёмкости потребовало бы притока-оттока большего количества электронов — а, значит, и большей временной задержки. Да электротехники это хорошо знают: постоянная времени для зарядки конденсатора через приток-отток электронов равна произведению ёмкости конденсатора на омическое сопротивление цепочки. Чудненько! Так чем тогда обеспечивается молниеносное появление напряжения на конденсаторе — с задержкой, которая не зависит от его ёмкости? Будем валять дурака дальше — или, для разнообразия, допустим, что дело здесь в движении по проводам всплесков электричества, образуемых зарядовыми разбалансами? Ведь эти две зарядки конденсатора, через приток-отток электронов и через индуцирование зарядовых разбалансов, различаются не только по своим характерным временам. Результаты этих двух зарядок — при одном и том же получившемся напряжении на конденсаторе — различаются кардинально. Зарядку через приток-отток электронов можно назвать активной: такой, активно заряженный, конденсатор может дать мощную разрядную искру в воздухе при попытке замкнуть его выводы. Зарядку же через индуцирование зарядовых разбалансов можно назвать реактивной: если, как в нашем примере с 10-километрорвой линией, оторвать от неё конденсатор через 33 микросекунды после подачи напряжения на линию, то, не пройдя стадию притока-оттока электронов, мощной разрядной искры конденсатор не даст. Да и вообще: при движении зарядовых разбалансов по проводникам, даже джоулево тепло не выделяется. С чего ему выделяться?
Это свойство, т.е. отсутствие выделения джоулева тепла, особенно показательно проявляется в постоянных магнитах. Помните, мы говорили о нестационарных, переключаемых химических связях в металлах? При условии высокой упорядоченности этих переключений, имеет смысл говорить о миграциях химических связей в образце. Причём, эти миграции могут циклически повторяться — вдоль одних и тех же замкнутых цепочек атомов. Теперь представьте: такой образец находится под воздействием внешнего магнитного «поля». И в образце происходит нечто поразительное. А именно, внешнее «поле» индуцирует подвижки зарядовых разбалансов: их миграции происходят вместе с миграциями химических связей — вдоль тех же замкнутых цепочек атомов. Это называется: стадия намагничивания. Когда внешнее «поле» устраняют, и намагничивание прекращается, миграции химических связей продолжаются, как ни в чём не бывало. Но теперь вместе с химическими связями мигрируют зарядовые разбалансы, которые никуда не исчезли. А движение зарядовых разбалансов по замкнутым траекториям — это движение электричества по замкнутым траекториям. Т.е., это замкнутые токи, которые сами порождают магнитное «поле». Красота! Пока цел кусок металла, химические связи мигрируют. А вместе с ними мигрируют зарядовые разбалансы. Годами и десятилетиями! Что им сделается? Они же каши не просят, и на джоулево тепло себя не расходуют. Не в этом ли секрет постоянных магнитиков? Или это настолько похоже на правду, что в это невозможно поверить?