Выбрать главу

Да и потом — многие молекулы ведь не являются диполями. Как же ослабляют внешнее поле диэлектрики, состоящие из таких молекул? Здесь теоретиков заклинило на том, что, под действием внешнего «поля», обычные молекулы превращаются в диполи, т.е. их эффективные противоположные заряды разъезжаются — как копыта у коровы на льду. Вот вам, мол, и дипольчики, вот вам, мол, и ослабление внешнего «поля»! Да, душевно получается. только вы, любезные, прикиньте — по вашим же замечательным формулам — насколько должны разъезжаться заряды в молекулах, чтобы обеспечивать наблюдаемые ослабления «поля». Особенно — в случае сегнетоэлектриков, у которых диэлектрическая проницаемость составляет десятки тысяч и более. У вас должны получиться чудовищные разъезжания зарядов, превышающие межмолекулярные расстояния — и это при напряжённостях «поля», ещё далёких от пробивных. Такого надругательства кристаллическая решётка не перенесла бы — рассыпалась бы в прах. Однако — не рассыпается. Чихала она на ваши баечки про то, как «поле» в диэлектрике гасят молекулы, превратившиеся в дипольчики! Кстати, согласно этим баечкам, молекулы превращаются в дипольчики во всём объёме диэлектрика — чтобы гасить «поле» мощью всего дружного коллектива. Да, навалиться всем скопом — оно, конечно, легче. Но есть одна заковыка: всем скопом здесь наваливаться бесполезно. «Поле» между пластинами плоского конденсатора создаётся макроскопическим разделением противоположных зарядов. И ослаблено оно может быть лишь макроскопическим же разделением зарядов — например, противоположными зарядами, индуцированными на той и другой поверхностях диэлектрической пластины. Диполи внутри пластины могут быть ориентированы хоть прямо, хоть вкривь и вкось — это всё равно не даст ослабления внешнего «поля», поскольку средняя объёмная плотность заряда в толще пластины будет по-любому равна нулю. В деле ослабления внешнего «поля» придётся отдуваться только поверхностным зарядам на противоположных сторонах пластины. Для молекулярных диполей создать такие заряды — слабо. А для зарядовых разбалансов — милое дело!

И это была лишь первая часть учения о диэлектриках — о том, как они внешнее «поле» ослабляют. Это называется — так себе, «область слабых полей». А ещё есть «область сильных полей». Там всё гораздо серьёзнее — там теоретики толкуют о феномене электрического пробоя. Знаете, как пробивает твёрдый диэлектрик? Пу-пумс! — и насквозь. Само собой, без теории твёрдого тела физики блуждали бы в потёмках, наивно полагая, что свободных электронов в диэлектриках нет. А что говорит нам теория твёрдого тела? Она говорит, что твёрдый диэлектрик кишит свободными электронами, как и металл — и, как у металла, кристаллическая решётка твёрдого диэлектрика держится на электронном газе. Теории твёрдого тела по фиг — твёрдый тебе металл или твёрдый тебе диэлектрик. Вы, белочки и зайчики, спрашиваете — почему тогда диэлектрики проводят постоянный электрический ток не так хорошо, как металлы? Ну, это не для средних умов. В диэлектриках, как учит нас зонная теория, для каждого свободного электрончика, какой бы вектор импульса он ни имел, непременно есть другой свободный электрончик — с точно противоположным импульсом. Ну, чисто куперовские пары — да ещё при комнатной температуре (за это тоже можно было дать Нобелевскую премию, но её дважды за одно и то же не дают). Так вот: в диэлектрике, значит, туча свободных электронов, которые мечутся как угорелые, но их суммарный импульс всегда равен нулю — а, значит, переноса электричества принципиально нет. Вы можете делать с диэлектриком, что хотите — бить по нему молотком, гнуть, пилить на части, нагревать или охлаждать, подавать на него «слабое» электрическое напряжение — суммарный импульс электронов останется нулевым. Что — непонятно, как такое может быть? Да физики сами этого не понимают. Чтобы было на кого спихнуть ответственность за эти чудеса, они специально распустили слух про чудище Ферми-Дирака (мы о нём уже говорили в «Фокусах-покусах квантовой теории»). Это оно, чудище Ферми-Дирака, обеспечивает нулевой суммарный импульс свободных электронов в диэлектрике. Больше — некому.

Ага! Тогда теория электрического пробоя должна быть очень проста. При подаче пробивного напряжения, чудище Ферми-Дирака перестаёт справляться со своими обязанностями, и всё! Может, пробивное напряжение его парализует. А, может, от пробивного напряжения это чудище вообще копыта откидывает. Тут такой простор для полёта теоретической мысли! Но нет, чегой-то эти перспективы не заинтересовали теоретиков. Они наплодили кучу теорий электрического пробоя, но ни одна из них не исходит из неприятностей у чудища Ферми-Дирака. Такое впечатление, что теоретики сговорились и дурака валяют — всяк на свой лад. Вот, например, что придумали: что канал проводимости в диэлектрике образуется в результате ионизации электронным ударом. Из той кучи теорий, эта особенно недурна; есть в ней для сердца физика что-то такое… к поцелуям зовущее. Конечно, есть у неё и недостаточки, но они тоже — премиленькие. Вот, например: атомы в твёрдом теле упакованы плотно, и электрон, на отрезке всего лишь в междуатомный промежуток, должен был бы набирать энергию, достаточную для ионизации атома. Но для этого требуются напряжённости, которые превышают экспериментальные пробивные значения на пару порядков. Чтобы теория пробоя через ионизацию электронным ударом была в согласии с опытом, длина свободного пробега медленного электрона в твёрдом диэлектрике должна составлять несколько сотен Ангстрем — а это невозможно при плотно упакованных атомах. Что — затрудненьице? Та оно-ж легко преодолимо-ж! Теоретики привели под ручки квантовую механику — разберись, мол, всеядная ты наша — и, на всякий случай, отошли подальше. Тут же раздались хруст и довольное чавканье, а на выходе получилось то, чему и полагается в таких случаях. Мол, медленный электрон, да, не может пройти сквозь отдельный атом, но когда этих атомов много, электрон нутром чует их всех сразу, и сквозь все сразу и прёт. Проперев таким макаром положенные сотни Ангстрем и набрав энергию, достаточную для ионизации атома, электрон теряет дар чутья всех атомов сразу — потому что от души вмазывается только в один из них, отчего тот ионизируется. Смотрите-ка, стало уже два свободных электрона! Они смогут ионизовать ещё два атома, и так далее. Возникнет электронная лавина, забодай её коза! Это же и получится электрический пробой! Только, тю ты, опять неувязочка из кармана вылазит. Первичный-то электрон может инициировать лавину, начиная с любого места в толще образца. Но никто никогда не наблюдал такого канала пробоя в твёрдом диэлектрике, который начинался бы где-то из середины образца — этот канал всегда начинается на его поверхности! Мистика какая-то… Да и вообще, теория пробоя через ударную ионизацию, когда затравочных свободных электронов можно пересчитать по пальцам одной руки, насмерть обижает зонную теорию, по которой даже непробитый диэлектрик кишит свободными электронами. Где же уважение к достижениям предшественников? Или, пардон, зонная теория — это и не достижение вовсе? А чего ж её до сих пор в вузах преподают? Без неё — студентам скучно, что ли?